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ABSTRACT for learning dictionaries from large data sets are coneiler

Mixed dicti . ted b . d B-spline f in [10,11]. In this communication we present an alternative
Ixed dictionaries generated by cosine and b-Splin€ TUNCe, o4 ction of dictionaries for representing natural ges

_t|ons are cor_13|dered. _lt is shown that when approximating., proposed dictionaries are a mixture of discrete cosine
images by highly nonlinear approaches, such as Orthogong d B-spline based dictionaries. We have found a good hum-

Ma’Fchln_g Pursu[t, th? dlscret.e version (.)f the proposedadict ber of examples (some of them presented here) for which the
naries yields a significant gain in sparsity. resulting dictionary renders a considerable gain in sparsi

Index Terms— Image Processing compared to fast transforms such as the DCT and DWT, at an
acceptable visual level (PSNR 40 dB).

The paper is organised as follows: In Sec. 2 we introduce
the discrete B-spline based dictionaries which togethén wi
Sparse representation of information is a central aim cd datthe dis<_:rete cosines form the large mi.xed dictionary we are
processing techniques. An usual first step of image proces roposing. In Sec. 3 we discuss the |mplementat|0n of the

MP approach we have used. The details of the actual pro-

ing applications, for instance, is to map the image onto a for deali ithi . inSec. 4wh It
transformed space allowing for the reduction of the numbef €SS for deaiing with Images are given in Sec. = where resufts

of data points representing the image. Currently the moéllustrating the capability of the proposed dictionarieyield

broadly used transforms for performing that task are the DigSParse representations by nonlinear approaches are gésen

crete Cosine Transform (DCT) and Discrete Wavelet Trans-

forms (DWT). An important reason for the popularity of both 2 B-SPLINE BASED DICTIONARIES
these transforms is the viability of their fast implemeiutat

H?V\:eve(;, since P;ra”el' processing 1S ber::omflng mori POWrhe discrete dictionaries we discuss here are inspired by a
erful and accessible, alternative approaches for SIgmaere oo nerg| result holding for continuous spline spaces. Ngmel

sentation are belng given increasing consideration. Elmvgarg thatspline spaces on a closed interval can be spanned by dic-

techniques address the matter in the following way: GiveRjonaries of B-splines of broader support than the corregpo
. N £ ) M
asignalf € R flnqvthe decompositiotf = >".”, c;ivy,, ing B-spline basis functions [12]
where vectors,, € R™, ¢ =1,..., M, usually calledatoms, = partition of an interval[c, d] is a finite set of points
are a subset of a redundant set called a dictionary. Approxz — {20V N € Nsuchthate — 2o < 21 < - <
) . ; ) : _ = {z; b, =
mations of this type are highly n_onll_near and are said ta;ly|el on < Tni1 — d, which generatesV subintervalsl, —
a sparse representation of the sighah terms of A/ atoms if s, is1),0 = 0 N —1andly = [zn,zn11]. Rep
f ; ; ; iy L1 )y 0 = YUyeeey - - ) +1]- -
Mis con5|derably S".‘a”e.r thaN. Available methodo!og|es resenting byl,,, the space of polynomials of degree smaller
for nonlinear approximations are known as Pursuit Strate;

. . . ) . than or equal ton € Ny = NU {0} and asC"™ the space of
gies. This COMprISes Bas_es Pursuit [1] and Matchmg l:)urf'unctions having continuous derivatives up to ordefwith
suit like algorithms, including Orthogonal Matching Putsu

o ) : Uth f conti functi the spli f or-
(OMP) and variations of it [2—7]. Another concern mherentc e space of continuous functions) the spline space of or

. : o : . i derm > 2 on|c, d], with single knots at the partition points,
to highly nonlinear approximations is the design of suiabl . - i m—2 ) C
dicti ios f i cain cl ¢ Siq il is define as5,,,(A) = {f € C™2[¢,d] : fl|1, € Upe1,i =
ICtionaries for representing certain classes ot sig 10~ 0,..., N}, wheref|;, indicates the restriction of the function
naries arising by merging orthogonal bases are theorktical !

twudied in I18.91. F gif ¢ . h to the intervall;. In the case of equally spaced knots the
studied in [8, 9]. From a different perspective, approache orresponding B-splines are called cardinal. Moreovehall

This work has been supported by EPSRC of UK (BBP626321). C?rdinal B-.splines of Ord?n can pe Obtain.ed from one car-
Project: “Highly nonlinear approximations for sparse sigrepresentation”  dinal B-splineB(z) associated with the uniform simple knot

1. INTRODUCTION
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Fig. 1. B-splines taken from dictionaries spanning the same spacd-ig. 2. Three discrete prototype B-splines taken from dictiorsarie
Linear B-splines (top) Cubic B-splines (bottom) spanning the same space. Linear B-splines (top) Cubic iBespl
(bottom)

sequencé, 1,..., m. Such a function is given as
processing the images in small blocks. We carry out the dis-

Bon() 1 i(_l)i m (z — i) ) cretization by taking the value of a prototype function caty
m + the knots (cf. small circles in graphs Fig. 2) and transtatin
that prototype one sampling point at each translation dtep.

where(z — i)' is equal to(z — i)™ 1if 2 —i > 0and 0 regard to the boundaries one may take different routes: A pos

otherwise. We shall focus on the particular cases corresponSiPility is to adopt periodicity (cyclic boundary conditie)
ingtom = 2 andm = 4. Form = 2 the cardinal spline and other apply the ‘cut off’ appr_oach an(_JI kee_p all th_e vec-
spaceS,(A) is the space of piece wise linear functions andtors whose support has nonzero intersection with the iaterv
can be spanned by a linear B-spline basis arising by transld#€ing considered. The former would leave a basis for the cor-
ing the prototype function known as ‘hat’ function. The first "ésponding Euclidean space and the later a redundant-dictio

3 functions in the top graph of Fig. 1 are 3 consecutive linnary-

ear B-spline basis functions. The 3 middle functions in thgsemark 1. We notice that by the proposed discretization the
same graph are linear B-spline functions of broader SUPPOf,t g_spline basis for the corresponding interval becorhes t
taken from a dictionary spanning the same space as the bggnqard Euclidean basis for either boundary conditiong. B

sis. The last 3 functions are taken from another dictionary f discretizing the hats of broader support the samples preser
the same space. Details on how to build these dictionarées he hat shape

givenin [12]. The basis and dictionary functions equivaten

the ones in the left graph of Fig. 1, but for cubic spline sgace  Obviously for a finite dimension Euclidean space we can

corresponding ten = 4, are given in the bottom graph of the construct arbitrary dictionaries. In particular, diffeteB-

same Figure. spline based dictionaries composed from vectors of differe
For constructing redundant dictionaries suitable for prosupports. Furthermore, we can include vectors of different

cessing images by nonlinear techniques we need to make swsepport by merging dictionaries. There is, of course, a com-

that the dictionaries can be processed with digital conrpute promise between redundancy and complexity that needs to be

having the existing memory capacity. Thus, we need to ajonsidered. The discussion of such a tradeoff is postpaned t

discretize the functions to obtain adequate Euclidearovect Sec. 4, where the numerical examples are described.

and b) restrict the functions to small intervals allowing fo From discrete unidimensional B-spline based dictionaries
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we obtain bidimensional ones simply by taking tensor prod-
uct. Actually in Sec. 4 we consider a dictionary consistifig o
unidimensional cosine and B-spline based vectors, of redun
dancy approximately five, and build the bidimensional dicti
nary by taking the tensor product of the whole unidimendiona
dictionary with itself.

3. IMPLEMENTATION OF THE GREEDY
ALGORITHM OMP

The OMP technique [6] is an adaptive greedy strategy for se-
lecting atoms which evolves as follows: Léte RY be a
given signal andv; } - ; a given redundant dictionary. Set-
ting R' = f atiterationk + 1 the OMP algorithm selects the
atom,v;,,, say, as the one minimising the absolute values of
the inner productsév;, R*), i =1,...,L, i.e.,

k
Vypr = argr?eaflx|(vi,Rk)|, whereRF = f—; cfwi, 2)
i—

and J is the set of indices labelling the dictionary’s atoms.
The coefficients?, i = 1,..., k in the above decomposition
are such thafi f — R¥||? is minimum, which is equivalent to
requestingR® = Py, f, wherePy, is the orthogonal projec-
tion operator ontd/;, = sparf{v, }¥_,. We base our imple-
mentation for determining the coefficients i = 1,...,kon  Fig. 3. The six test images from left to right, top to bottom: Boat,
Gram Schmidt orthogonalization with re-orthogonalizatio Bridge, Film clip, Lena, Mandrill, Peppers

and recursive biorthogonalization. Basically, at eactatten

we update the vectorg ! = o — o7 (ve,, TF), where

5;@11 = qo1/||@rs1]]?, With gey1 = e, — Py, qr+1 and

q1 = ve,. One reorthogonalization step implies to recalculat
Qk+1 8SQk+1 = Qkt1 — PqukH The prolectm'PVk is here
computed asf’vk QrQ}, where thek-columns of matrix  Discrete Cosine Dictionary
Qy are the vectors;/||g;|l, ¢ = 1,...,k andQ; indicates
the transpose conjugate @f,. However, to calculate the co-

divide it into blocks ofl 6 x 16 pixels. For approximating each
J)Iock we first construct the dictionariéy, : = 1,...,4 de-
fined as follows:

(25 —1)(Ei—1)

efficients of the linear superposition we express the ptojsc D1 = {e; cos( 4L )= }1 b
as Py, = AB;, where thek-columns of matrix4,, are the ) ) o

selected vectors and thecolumns of matrixB, are the vec- With ¢i, @ = 1,..., My normalisation factors.

torsd¥, i = 1,...,k. Thus, t~he required coefficients arise pigcrete B- -Spline based dictionaries

from the inner productxs’c = (oF, f),i=1,...,k. Details

on this type of implementation are given in [5 7] and the code Dy = {w;BF (j —i)|L;j=1,...,L}Mx,

can be found at [13]. Moreover, as will be discussed in the
next section, the fact that we deal with dictionaries inimv  where the notatio,,, (j — )| L indicates the restriction to be
cosine and supported atoms reduces the general complexiy array of size., indicesk = 2, ..., 4 label the dictionaries

of the OMP method. of different support andv;, i = 1,..., M, are normalisa-
tion constants.Mj is the number of atoms in dictionaky
4. SPARSE IMAGE REPRESENTATION BY Considerations are limited to the cases= 2 (hat atoms)
DISCRETE COSINE AND B-SPLINE BASED andm = 4 (atoms arising by discretizing cubic B-splines).
DICTIONARIES Because we adopt the cut off approach for the boundary, the

numbersM,, of total atoms in the:th-dictionary varies ac-
Here we present examples of the gain in sparsity achieved userding to the atom’s support. For the linear B-spline based
ing dictionaries formed by the union of Discrete Cosine (DC)dictionaries the corresponding supports are 1, 3, and 3ewhi
and B-Spline based dictionaries. The size of all the test imfor the cubic the supports are 3, 7, and 11. With these dic-
ages we consider 512 x 512. To process each images we tionaries we construct the tensor product diction®¥ =



[Image || D* | D* [ DCT | DWT ]
Boat 7.05 | 6.89| 3.63 | 3.65
Bridge 424 | 3.97| 206 | 2.2
Film 9.72 | 9.26| 453 | 4.8
Lena 11.78| 11.7| 6.5 | 6.97
Mandrill || 3.72 | 3.5 | 1.91| 1.90
Peppers| 8.9 | 8.62| 4.36 | 3.39

Table 1. Compression ratio (corresponding to PSNR=40 dB)
achieved by each dictionary. The first column correspond$eo

dictionary D* composed of DC redundancy 2 and linear B-spline
atoms of support 1, 3 and 5. The second column corresponds-to d
tionary D* (DC and cubic B-spline atoms of support 3, 7 and 11).

The third column corresponds to the result obtained by neali se-
lection of DCT coefficients. The last column is the comprassatio
produced by the Cohen-Daubechies-Feauveau 9/7 waveisfdaran

computed using the WaveletCDF97 software (by thresholdoej-

ficients so as to achieve the required PSNR or 40 dB).

D; ® Dj,i,j = 1,...,4 (m = 2 for linear B-splines and

m = 4 for cubic B-splines).

[1]

(2]

(3]

[4]

[5]

The complexity of applying the OMP approach is domi- [6]
nated by the evaluation, at each iteration, of the innerprod
ucts between the residual and the dictionary atoms. In the
case of the proposed dictionaries the inner product with the
DC dictionaries can be implemented by fast DCT and the
complexity in computing the inner products with the other [7]
atoms depends on the atoms support (cf (2)). Denoting by

d; the support of the B-spline based dictionarjthe com-

plexity of computing the inner products at the selectiomp ste
(2) is 14(M;)? log, My + 8N 327, d; M;. Of course, the to-

(8]

tal complexity depends on the sparsity, as the complexity fo
selecting each atom has to be multiplied by the number of

selected atoms. Nevertheless, the fact that the image is pro
cessed in small blocks leaves room for fast implementation

by parallel processing.

9]

As can be observed in Table 1, the performance in spar-

sity that is achieved with the proposed dictionaries iglig

better when using hat dictionaries. However with both dicti
naries the sparsity in representing the six test imagesfsign
icantly improves upon that yielded by faster nonlinear tech

nigues such as the DCT and DWT.

5. CONCLUSIONS

(10]

(11]

Mixed DC and B-spline based dictionaries for sparse im{12]
age representation have been introduced. It was shown that,
compared to the fast nonlinear DCT and DWT approaches,

the proposed dictionaries yield a significant gain in sparsi

From the encouraging results and the fact that the procesfrs)

ing is suitable for parallel computing, we feel confidentttha

the proposed dictionaries should be of assistance to those

applications that benefit from sparse image representation
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