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ABSTRACT

Mixed dictionaries generated by cosine and B-spline func-
tions are considered. It is shown that when approximating
images by highly nonlinear approaches, such as Orthogonal
Matching Pursuit, the discrete version of the proposed dictio-
naries yields a significant gain in sparsity.

Index Terms— Image Processing

1. INTRODUCTION

Sparse representation of information is a central aim of data
processing techniques. An usual first step of image process-
ing applications, for instance, is to map the image onto a
transformed space allowing for the reduction of the number
of data points representing the image. Currently the most
broadly used transforms for performing that task are the Dis-
crete Cosine Transform (DCT) and Discrete Wavelet Trans-
forms (DWT). An important reason for the popularity of both
these transforms is the viability of their fast implementation.
However, since parallel processing is becoming more pow-
erful and accessible, alternative approaches for signal repre-
sentation are being given increasing consideration. Emerging
techniques address the matter in the following way: Given
a signalf ∈ R

N find the decompositionf =
∑M

i=1
civℓi

,
where vectorsvℓi

∈ R
N , i = 1, . . . , M , usually called atoms,

are a subset of a redundant set called a dictionary. Approxi-
mations of this type are highly nonlinear and are said to yield
a sparse representation of the signalf in terms ofM atoms if
M is considerably smaller thanN . Available methodologies
for nonlinear approximations are known as Pursuit Strate-
gies. This comprises Bases Pursuit [1] and Matching Pur-
suit like algorithms, including Orthogonal Matching Pursuit
(OMP) and variations of it [2–7]. Another concern inherent
to highly nonlinear approximations is the design of suitable
dictionaries for representing certain classes of signals.Dictio-
naries arising by merging orthogonal bases are theoretically
studied in [8, 9]. From a different perspective, approaches
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for learning dictionaries from large data sets are considered
in [10, 11]. In this communication we present an alternative
construction of dictionaries for representing natural images.
The proposed dictionaries are a mixture of discrete cosine
and B-spline based dictionaries. We have found a good num-
ber of examples (some of them presented here) for which the
resulting dictionary renders a considerable gain in sparsity,
compared to fast transforms such as the DCT and DWT, at an
acceptable visual level (PSNR 40 dB).

The paper is organised as follows: In Sec. 2 we introduce
the discrete B-spline based dictionaries which together with
the discrete cosines form the large mixed dictionary we are
proposing. In Sec. 3 we discuss the implementation of the
OMP approach we have used. The details of the actual pro-
cess for dealing with images are given in Sec. 4 where results
illustrating the capability of the proposed dictionaries to yield
sparse representations by nonlinear approaches are presented.

2. B-SPLINE BASED DICTIONARIES

The discrete dictionaries we discuss here are inspired by a
general result holding for continuous spline spaces. Namely,
thatspline spaces on a closed interval can be spanned by dic-
tionaries of B-splines of broader support than the correspond-
ing B-spline basis functions [12].

A partition of an interval[c, d] is a finite set of points
∆ := {xi}

N+1

i=0 , N ∈ N such thatc = x0 < x1 < · · · <
xN < xN+1 = d, which generatesN subintervalsIi =
[xi, xi+1), i = 0, . . . , N − 1 andIN = [xN , xN+1]. Rep-
resenting byΠm the space of polynomials of degree smaller
than or equal tom ∈ N0 = N ∪ {0} and asCm the space of
functions having continuous derivatives up to orderm (with
C0 the space of continuous functions) the spline space of or-
derm ≥ 2 on [c, d], with single knots at the partition points,
is define asSm(∆) = {f ∈ Cm−2[c, d] : f |Ii

∈ Πm−1, i =
0, . . . , N}, wheref |Ii

indicates the restriction of the function
f to the intervalIi. In the case of equally spaced knots the
corresponding B-splines are called cardinal. Moreover allthe
cardinal B-splines of orderm can be obtained from one car-
dinal B-splineB(x) associated with the uniform simple knot
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Fig. 1. B-splines taken from dictionaries spanning the same space.
Linear B-splines (top) Cubic B-splines (bottom)

sequence0, 1, . . . , m. Such a function is given as

Bm(x) =
1

m!

m
∑

i=0

(−1)i

(

m

i

)

(x − i)m−1
+ , (1)

where(x − i)m−1
+ is equal to(x − i)m−1 if x − i > 0 and 0

otherwise. We shall focus on the particular cases correspond-
ing to m = 2 andm = 4. For m = 2 the cardinal spline
spaceS2(∆) is the space of piece wise linear functions and
can be spanned by a linear B-spline basis arising by translat-
ing the prototype function known as ‘hat’ function. The first
3 functions in the top graph of Fig. 1 are 3 consecutive lin-
ear B-spline basis functions. The 3 middle functions in the
same graph are linear B-spline functions of broader support
taken from a dictionary spanning the same space as the ba-
sis. The last 3 functions are taken from another dictionary for
the same space. Details on how to build these dictionaries are
given in [12]. The basis and dictionary functions equivalent to
the ones in the left graph of Fig. 1, but for cubic spline spaces
corresponding tom = 4, are given in the bottom graph of the
same Figure.

For constructing redundant dictionaries suitable for pro-
cessing images by nonlinear techniques we need to make sure
that the dictionaries can be processed with digital computers
having the existing memory capacity. Thus, we need to a)
discretize the functions to obtain adequate Euclidean vectors
and b) restrict the functions to small intervals allowing for
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Fig. 2. Three discrete prototype B-splines taken from dictionaries
spanning the same space. Linear B-splines (top) Cubic B-splines
(bottom)

processing the images in small blocks. We carry out the dis-
cretization by taking the value of a prototype function onlyat
the knots (cf. small circles in graphs Fig. 2) and translating
that prototype one sampling point at each translation step.In
regard to the boundaries one may take different routes: A pos-
sibility is to adopt periodicity (cyclic boundary conditions)
and other apply the ‘cut off’ approach and keep all the vec-
tors whose support has nonzero intersection with the interval
being considered. The former would leave a basis for the cor-
responding Euclidean space and the later a redundant dictio-
nary.

Remark 1. We notice that by the proposed discretization the
hat B-spline basis for the corresponding interval becomes the
standard Euclidean basis for either boundary conditions. By
discretizing the hats of broader support the samples preserve
the hat shape.

Obviously for a finite dimension Euclidean space we can
construct arbitrary dictionaries. In particular, different B-
spline based dictionaries composed from vectors of different
supports. Furthermore, we can include vectors of different
support by merging dictionaries. There is, of course, a com-
promise between redundancy and complexity that needs to be
considered. The discussion of such a tradeoff is postponed to
Sec. 4, where the numerical examples are described.

From discrete unidimensional B-spline based dictionaries



we obtain bidimensional ones simply by taking tensor prod-
uct. Actually in Sec. 4 we consider a dictionary consisting of
unidimensional cosine and B-spline based vectors, of redun-
dancy approximately five, and build the bidimensional dictio-
nary by taking the tensor product of the whole unidimensional
dictionary with itself.

3. IMPLEMENTATION OF THE GREEDY
ALGORITHM OMP

The OMP technique [6] is an adaptive greedy strategy for se-
lecting atoms which evolves as follows: Letf ∈ R

N be a
given signal and{vi}

L
i=1 a given redundant dictionary. Set-

ting R1 = f at iterationk + 1 the OMP algorithm selects the
atom,vlk+1

say, as the one minimising the absolute values of
the inner products〈vi, R

k〉, i = 1, . . . , L, i.e.,

vlk+1
= arg max

i∈J
|〈vi, R

k〉|, whereRk = f−

k
∑

i=1

ck
i vℓi

, (2)

andJ is the set of indices labelling the dictionary’s atoms.
The coefficientsck

i , i = 1, . . . , k in the above decomposition
are such that||f − Rk||2 is minimum, which is equivalent to
requestingRk = P̂Vk

f , whereP̂Vk
is the orthogonal projec-

tion operator ontoVk = span{vℓi
}k

i=1. We base our imple-
mentation for determining the coefficientsci, i = 1, . . . , k on
Gram Schmidt orthogonalization with re-orthogonalization,
and recursive biorthogonalization. Basically, at each iteration
we update the vectors̃vk+1

i = ṽk
i − ṽk+1

k+1
〈vℓk+1

, ṽk
i 〉, where

ṽk+1

k+1
= qk+1/‖qk+1‖

2, with qk+1 = vℓk+1
− P̂Vk

qk+1 and
q1 = vℓ1 . One reorthogonalization step implies to recalculate
qk+1 asqk+1 = qk+1 − P̂Vk

qk+1. The projectorP̂Vk
is here

computed aŝPVk
= QkQ∗

k where thek-columns of matrix
Qk are the vectorsqi/‖qi‖, i = 1, . . . , k andQ∗

k indicates
the transpose conjugate ofQk. However, to calculate the co-
efficients of the linear superposition we express the projectors
asP̂Vk

= AkB∗

k where thek-columns of matrixAk are the
selected vectors and thek-columns of matrixBk are the vec-
tors ṽk

i , i = 1, . . . , k. Thus, the required coefficients arise
from the inner productsck

i = 〈ṽk
i , f〉, i = 1, . . . , k. Details

on this type of implementation are given in [5,7] and the code
can be found at [13]. Moreover, as will be discussed in the
next section, the fact that we deal with dictionaries involving
cosine and supported atoms reduces the general complexity
of the OMP method.

4. SPARSE IMAGE REPRESENTATION BY
DISCRETE COSINE AND B-SPLINE BASED

DICTIONARIES

Here we present examples of the gain in sparsity achieved us-
ing dictionaries formed by the union of Discrete Cosine (DC)
and B-Spline based dictionaries. The size of all the test im-
ages we consider is512 × 512. To process each images we

Fig. 3. The six test images from left to right, top to bottom: Boat,
Bridge, Film clip, Lena, Mandrill, Peppers

divide it into blocks of16×16 pixels. For approximating each
block we first construct the dictionariesDi, i = 1, . . . , 4 de-
fined as follows:

Discrete Cosine Dictionary

D1 = {ci cos(
π(2j − 1)(i − 1)

4L
), j = 1, . . . , N}M1

i=1,

with ci, i = 1, . . . , M1 normalisation factors.

Discrete B-Spline based dictionaries

Dk = {wiB
k
m(j − i)|L; j = 1, . . . , L}Mk

i=1,

where the notationBm(j − i)|L indicates the restriction to be
an array of sizeL, indicesk = 2, . . . , 4 label the dictionaries
of different support andwi, i = 1, . . . , Mk are normalisa-
tion constants.Mk is the number of atoms in dictionaryk.
Considerations are limited to the casesm = 2 (hat atoms)
andm = 4 (atoms arising by discretizing cubic B-splines).
Because we adopt the cut off approach for the boundary, the
numbersMk of total atoms in thekth-dictionary varies ac-
cording to the atom’s support. For the linear B-spline based
dictionaries the corresponding supports are 1, 3, and 5, while
for the cubic the supports are 3, 7, and 11. With these dic-
tionaries we construct the tensor product dictionaryDm =



Image D2 D4 DCT DWT

Boat 7.05 6.89 3.63 3.65
Bridge 4.24 3.97 2.06 2.2
Film 9.72 9.26 4.53 4.8
Lena 11.78 11.7 6.5 6.97
Mandrill 3.72 3.5 1.91 1.90
Peppers 8.9 8.62 4.36 3.39

Table 1. Compression ratio (corresponding to PSNR=40 dB)
achieved by each dictionary. The first column corresponds tothe
dictionaryD2 composed of DC redundancy 2 and linear B-spline
atoms of support 1, 3 and 5. The second column corresponds to dic-
tionaryD4 (DC and cubic B-spline atoms of support 3, 7 and 11).
The third column corresponds to the result obtained by nonlinear se-
lection of DCT coefficients. The last column is the compression ratio
produced by the Cohen-Daubechies-Feauveau 9/7 wavelet transform
computed using the WaveletCDF97 software (by thresholdingcoef-
ficients so as to achieve the required PSNR or 40 dB).

Di ⊗ Dj , i, j = 1, . . . , 4 (m = 2 for linear B-splines and
m = 4 for cubic B-splines).

The complexity of applying the OMP approach is domi-
nated by the evaluation, at each iteration, of the inner prod-
ucts between the residual and the dictionary atoms. In the
case of the proposed dictionaries the inner product with the
DC dictionaries can be implemented by fast DCT and the
complexity in computing the inner products with the other
atoms depends on the atoms support (cf (2)). Denoting by
di the support of the B-spline based dictionaryi, the com-
plexity of computing the inner products at the selection step
(2) is14(M1)

2 log2 M1 + 8N
∑4

i=2
diMi. Of course, the to-

tal complexity depends on the sparsity, as the complexity for
selecting each atom has to be multiplied by the number of
selected atoms. Nevertheless, the fact that the image is pro-
cessed in small blocks leaves room for fast implementation
by parallel processing.

As can be observed in Table 1, the performance in spar-
sity that is achieved with the proposed dictionaries is slightly
better when using hat dictionaries. However with both dictio-
naries the sparsity in representing the six test images signif-
icantly improves upon that yielded by faster nonlinear tech-
niques such as the DCT and DWT.

5. CONCLUSIONS

Mixed DC and B-spline based dictionaries for sparse im-
age representation have been introduced. It was shown that,
compared to the fast nonlinear DCT and DWT approaches,
the proposed dictionaries yield a significant gain in sparsity.
From the encouraging results and the fact that the process-
ing is suitable for parallel computing, we feel confident that
the proposed dictionaries should be of assistance to those
applications that benefit from sparse image representation.
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