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Abstract

Cooperative Greedy Pursuit Strategies are considered for approximating a signal partition
subjected to a global constraint on sparsity. The approach aims at producing a high quality
sparse approximation of the whole signal, using highly coherent redundant dictionaries. The co-
operation takes place by ranking the partition units for their sequential stepwise approximation,
and is realized by means of i)forward steps for the upgrading of an approximation and/or ii)
backward steps for the corresponding downgrading. The advantage of the strategy is illustrated
by approximation of music signals using redundant trigonometric dictionaries. In addition to
rendering stunning improvements in sparsity with respect to the concomitant trigonometric
basis, these dictionaries enable a fast implementation of the approach via the Fast Fourier
Transform.

Keywords: Cooperative Greedy Pursuit Strategies; Sparse Representation of Music Signals by

Partitioning; Trigonometric Dictionaries.

1 Introduction

Compressible signals, such as audio and vision data, are characterized by samples containing a good

deal of redundancy. Consequently, if properly processed, the signal information content can be

accessed from a reduced data set. Transformations for data reduction are said to produce a sparse

representation of a signal if they can accurately reproduce the information the signal conveys, with

significantly less points that those by which the original signal is given. Most popular transformations

for signal processing (e.g. Discrete Cosine Transform and Discrete Wavelet Transform) do not modify

the signal size. A sparse representation is achieved, a posteriori, by disregarding the least relevant
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points in the transformed domain. Nonetheless, much higher sparsity in a signal representation

may be achieved by allowing for the expansion of the transformed domain, thereby leaving room

for dedicated transformations adapted to the particular signal. Such a framework involves a large

redundant set called ‘dictionary’. The aim is to represent a signal as a superposition of, say K,

dictionary’s elements, which are called ‘atoms’, with K much less than the signal size.

Given a redundant dictionary, the problem of finding the sparsest approximation of a signal, up

to some predetermined error, is an NP-hard problem [1]. Consequently, the interest in practical

applications lies in the finding of those solutions which, being sparse in relation to other possible

representations, are also easy and fast to construct. Sparse practical solutions can be found by

what are known as Pursuit Strategies. Here the discrimination between two broad categories is

in order: i)The Basis Pursuit based approaches, which endeavor to obtain a sparse solution by

minimization of the 1-norm [2]. ii)Greedy algorithms which look for a sparse solution by stepwise

selection of dictionary’s atoms. Practical greedy algorithms, which originated as regression techniques

in statistics [3], have been popularized in signal processing applications as Matching Pursuit (MP) [4]

and Orthogonal Matching Pursuit (OMP) [5] methods. The approach, which in principle consider

the stepwise selection of single atoms, has been extended to multiple atom selection [6]. Dedicated

algorithms such as Stagewise Orthogonal Matching Pursuit [7], Compressive Sampling Matching

Pursuit [8], and Regularized Orthogonal Matching Pursuit [9] are known to be effective within the

context of the emerging theory of sampling, called compressive sensing/sampling. This theory asserts

that sparsity of a representation may also lead to more economical data collection [10–14]. In that

context the reconstruction problem is of a very particular nature, though: It is assumed that a signal

is sparse in an orthogonal basis and the goal is to reconstruct the signal from a reduced number

of measures. On the contrary, in this Communication we address the traditional representation

matter: the signal is assumed to be completely given by its samples. The aim is to produce a high

quality approximation of all those samples, as a K-term superposition of atoms belonging to a highly
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coherent dictionary. In this case, minimization of the 1-norm is not effective and step wise greedy

selection of single atoms benefits sparsity results.

In practice, when trying to approximate real life signals using a redundant dictionary, there is

a need to approximate by partitioning. While this requirement normally comes from storage and

computational complexity demands, it does not represent a disadvantage. On the contrary, to capture

local properties of signals such as images, or music, non-local orthogonal transforms are also applied

on partitions to obtain superior results. The broadly used image compression standard JPEG and

the music compression standard MP3, for instance, operate by partitioning as a first step in the

compression process.

The central aim of this paper is to tailor pursuit algorithms for approximation by partitioning

without significant increment in computational complexity, in comparison with standard applications.

The examples presented here clearly show that a global constraint on sparsity, rather than quality

constraints on the individual partition’s units, may benefit enormously the quality of the signal

approximation. This is true even if the actual approximation of each unit is performed individually.

Because considerations are restricted to producing high quality approximations, there is no risk that

blocking artifacts could appear due to the signal division into non-overlapping pieces.

Notational convention

Throughout the paper R, C and N indicate the sets of real, complex, and natural numbers, respec-

tively. Boldface letters are used to indicate Euclidean vectors, whilst standard mathematical fonts

indicate components, e.g., f ∈ RN , N ∈ N is a vector of components f(i), i = 1, . . . , N . A partition

of a signal f ∈ RN is represented as a set of disjoint pieces f{q} ∈ RNb, q = 1, . . . , Q, which for sim-

plicity are assumed to be all of the same size and such that QNb = N . The signal is reconstructed

from the partition through the operation f = Ĵ
Q

q=1f{q} where Ĵ represents the operator which con-

catenates the partition. The operation is defined as follows: given f{1} ∈ RNb and f{2} ∈ RNb ,

the vector f = f{1} Ĵ f{2} is a vector in R2Nb having components f(i) = f{1}(i) for i = 1, . . . , Nb,
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and f(i) = f{2}(i − Nb) for i = Nb + 1, . . . , 2Nb. Thus f = Ĵ
Q

q=1f{q} is a vector in RQNb having

components f(i) = f{q}(i − (q − 1)Nb), i = (q − 1)Nb + 1, . . . , qNb, q = 1, . . . , Q. Consequently

〈f , f〉 = ‖f‖2 = ∑Q
q=1 ‖f{q}‖

2 , were 〈·, ·〉 indicates the Euclidean inner product and ‖ · ‖ the induced

2-norm.

Paper contributions

Given a signal partition f{q} ∈ RNb , q = 1, . . . , Q and a dictionary D =
{
dn ∈ RNb ; ‖dn‖ = 1

}M

n=1
to

approximate the elements f{q} in the partition, the following outcome has been recently reported [15]:

A very significant gain in the sparsity of a signal approximation may be effectively obtained by a

greedy pursuit strategy, if the approximation of each piece f{q} (called ‘q-block’) is accomplished in a

hierarchized manner. Suppose that the k(q)-term approximation of f{q} is the atomic decomposition:

fa{q} =
k(q)∑

n=1

c{q}ndℓ{q}n , q = 1, . . . , Q,

with the atoms dℓ{q}n , n = 1, . . . , k(q) selected from the dictionary D, via a stepwise greedy pursuit

strategy. Suppose also that the number of atoms to approximate the whole signal f is a fixed value

K, i.e., K =
∑Q

q=1 k(q). A possibility to handle this constraint is to consider a hierarchized selection

of the pieces f{q} to be approximated in each approximation step. Some remarkable results of this

strategy, which has been termed Hierarchized Block Wise (HBW) greedy strategy, are illustrated

in [15] by approximating images using the greedy algorithms MP and OMP. When these methods

are applied in the proposed HBW fashion are called HBW-MP and HBW-OMP, respectively.

While [15] focusses on highlighting the suitability of the HBW-OMP/MP method when the image

approximation is carried out in the wavelet domain, this Communication extends the method as well

as the range of applicability. The extended techniques are shown to produce hugely sparse high

quality approximation of music signals. This is accomplished with trigonometric dictionaries, which

are endowed with the additional advantage of enhancing the competitiveness of the approach in terms

of computational complexity.
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The extension of the idea outlined in [15] comprises:

• A revised version of the approach, which optimizes the ranking of the pieces f{q}, q = 1, . . . , Q

for their step wise approximation without significant extra computational cost. Additionally,

the selection of atoms is also optimized by including the Optimized Orthogonal Matching

Pursuit (OOMP) criterion [16].

• A HBW backward approach for downgrading the approximation when required. This is realized

in a stepwise optimized manner, by removing terms in the approximations of the selected blocks.

• An alternative to the HBW strategy which consists of two stages. The first stage involves the

approximation of the pieces f{q}, q = 1, . . . , Q, up to a tolerance error. The second stage refines

the previous approximation by making possible the downgrading of the atomic decomposition of

some blocks, called ‘donors’, and the upgrading of the atomic decompositions of another blocks,

called ‘receivers’. Since this process is inspired in the Swapping-based-Refinement of greedy

strategies introduced in [17], we refer to it as HBW-Swapping-based-Refinement (HBW-SbR).

Further contributions of the paper are

• The illustration of the huge gain in the sparsity of the representation of music signals obtainable

by the proposed approach when using trigonometric dictionaries.

• The finding that a mixed trigonometric dictionary having both, discrete cosine and sine com-

ponents, renders the best sparsity performance for melodic music signals, in comparison with

the single discrete cosine (or sine) dictionaries with the same redundancy. This result contrasts

with the fact that, the broadly used single discrete cosine basis is the basis yielding best spar-

sity results for music signals, in comparison to other trigonometric basis of the same nature.

Note: The discrete cosine/sine components of the mixed dictionary are not just the real and

imaginary parts of the complex exponentials in a Fourier series. The involved phase factors

make the whole difference in achieving high sparsity.
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• The provision of implementation details in the form of algorithms for the proposed strategies

and the provision of dedicated algorithms to operate with trigonometric dictionaries via the

Fast Fourier Transform (FFT).

A library of MATLAB functions for implementing the proposed methods, and running the numerical

examples in this paper, are available for downloading on [18].

2 Hierarchized Blockwise OMP, revised

As already stated, a signal f ∈ R
N will be considered to be the composition of Q identical and

disjoint blocks f = Ĵ
Q

q=1f{q},, where f{q} ∈ RNb assuming that NbQ = N . Each piece f{q} ∈ RNb

is approximated using a dictionary D =
{
dn ∈ RNb ; ‖dn‖ = 1

}M

n=1
, with M > Nb, by an atomic

decomposition of the form:

fa{q} =
k(q)∑

n=1

c{q}ndℓ{q}n , q = 1 . . . , Q. (1)

where the atoms dℓ{q}n , n = 1, . . . , k(q) are selected from the dictionary to approximate the block

q. Thus, each set of selected indices Γ{q} = {ℓ{q}n}k(q)n=1 is a subset of the set of labels {1, . . . ,M}

which identify the atoms in D. In general Γ{q} 6= Γ{p} and k(q) 6= k(p) if p 6= q.

The HBW-OMP approach outlined in [15] selects atoms in (1) as indicated by the OMP approach,

i.e.: On setting initially k(q) = 0 and r0{q} = f{q}, the algorithm picks the atoms in the atomic

decomposition of block q by selecting one by one the indices which satisfy:

ℓ{q}k(q)+1 = argmax
n=1,...,M

∣∣〈dn, r
k(q){q}

〉∣∣ , with rk(q){q} = f{q} −
k(q)∑

n=1

c{q}ndℓ{q}n
if k(q) > 0. (2)

The coefficients c{q}n, n = 1, . . . , k(q) in (2) are such that the norm
∥∥rk(q){q}

∥∥ is minimized. This

is ensured by requesting that rk(q){q} = f{q} − P̂V
q

k(q)
f{q}, where P̂V

q

k(q)
is the orthogonal projection

operator onto V
q
k(q) = span

{
dℓ{q}n

}k(q)

n=1
. This condition also guarantees that the set

{
dℓ{q}n

}k(q)

n=1
is

linearly independent.
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An implementation as in [16] provides us with two representations of P̂V
q

k(q)
. One of the represen-

tations is achieved by orthonormalization of the set
{
dℓ{q}n

}k(q)

n=1
. The other by biorthogonalization

of the same set. We implement the orthogonalization by Gram Schmidt method, including a re-

orthogonalization step, as follows: The orthonormal set {w̃{q}n}
k(q)
n=1 is inductively constructed from

w̃{q}1 = w{q}1 = dℓ{q}1
through the process:

w̃{q}n =
w{q}n
‖w{q}n‖

, with w{q}n = dℓ{q}n −
n−1∑

i=1

w̃{q}i
〈
w̃{q}i,dℓ{q}n

〉
. (3)

For numerical accuracy at least one re-orthogonalization step is usually needed. This implies to

recalculate the above vectors as

w{q}n ← w{q}n −
n−1∑

i=1

w̃{q}i 〈w̃{q}i,w{q}n〉 , (4)

with the corresponding normalization giving rise to the orthonormal set {w̃{q}n}
k(q)
n=1

. Notice that,

whilst this set can be used to calculate the orthogonal projection of f{q} onto V
q
k(q) as

P̂V
q

k(q)
f{q} =

k(q)∑

n=1

w̃{q}n 〈w̃{q}n, f{q}〉 , (5)

this superposition is not the atomic decomposition in terms of the selected atoms. In order to

produce such a decomposition we use the other representation for an orthogonal projector given

in [16]. Namely,

P̂V
q

k(q)
f{q} =

k(q)∑

n=1

dℓ{q}n
〈b{q}n, f{q}〉 . (6)

For a fixed q the vectors b{q}n, n = 1, . . . , k(q) in (6) are biorthogonal to the selected atoms,

i.e.
〈
dℓ{q}n ,b{q}m

〉
= 0 if n 6= m and 1 if n = m, and span the identical subspace i.e., Vq

k(q) =

span{b{q}n}
k(q)
n=1 = span{dℓ{q}n}k(q)n=1. In order to fulfill the last condition all the vectors need to be

updated when a new atom is introduced in the spanning set. Starting from b{q}1 = dℓ{q}1
both the

calculation and upgrading of the biorthogonal set is attained recursively as follows

b{q}k(q) =
w{q}k(q)
‖w{q}k(q)‖2

, with w{q}k(q) as in (3)

b{q}n ← b{q}n − b{q}k(q)
〈
dℓ{q}k(q)

,b{q}n
〉
, n = 1, . . . , (k(q)− 1).

(7)
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These vectors produce the required atomic decomposition for the block q. The coefficients in (1) are

the inner products in (6), i.e. c{q}n = 〈b{q}n, f{q}〉 , n = 1, . . . , k(q).

The HBW variant of a greedy strategy establishes an order for upgrading the atomic decompo-

sition of the blocks in the partition. Instead of completing the approximation of each block at once,

the atomic decomposition to be upgraded at each iteration corresponds to a block, say q⋆, selected

according to a greedy criterion. In other words: the HBW version of a pursuit method for approxi-

mating a signal by partitioning involves two selection instances: a) the selection of dictionary’s atoms

for approximating each of the blocks in the partition and b)the selection, at each iteration step, of

the block where the upgrading of the approximation is to be realized. In [15] the blocks are selected

through the process

q⋆ = argmax
q=1,...,Q

∣∣∣
〈
dℓ{q}k(q)+1

, rk(q){q}
〉∣∣∣ . (8)

We notice, however, that condition (8) for the block’s selection can be optimized, in a stepwise sense,

without significant computational cost. The next proposition revise the condition (8) considered

in [15].

Proposition 1. Let ℓ{q}k(q)+1 be the index arising, for each value of q, from the maximization

process (2). In order to minimize the square norm of the total residual ‖rk+1‖2 at iteration k+1 the

atomic decomposition to be upgraded should correspond to the block q⋆ such that

q⋆ = argmax
q=1,...,Q

χ(q), where χ(q) =
∣∣∣
〈
w̃{q}k(q)+1, f{q}

〉∣∣∣ =

∣∣∣
〈
dℓ{q}k(q)+1

, rk(q){q}
〉∣∣∣

∥∥∥w{q}k(q)+1

∥∥∥
, (9)

with w{q}k(q)+1 and w̃{q}k(q)+1 as given in (3).

Proof. Since at iteration k+1 the atomic decomposition of only one block is upgraded by one atom,

the total residue at iteration k + 1 is constructed as

rk+1 = Ĵ
Q
p=1
p 6=q

r{p}k(p) Ĵ r{q}k(q)+1.
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Then,

‖rk+1‖2 =
Q∑

p=1
p 6=q

‖r{p}k(p)‖2 + ‖r{q}k(q)+1‖2.

Moreover, since rk(q)+1{q} = f{q} − P̂V
q

k(q)+1
f{q} using the orthonormal vectors (3) to calculate

P̂V
q

k(q)+1
f{q} we have:

‖rk(q)+1{q}‖2 = ‖rk(q){q}‖2 −
∣∣∣
〈
w̃{q}k(q)+1, f{q}

〉∣∣∣
2

,

which is minimum for the q⋆-value corresponding to the maximum value of
∣∣∣
〈
w̃{q}k(q)+1, f{q}

〉∣∣∣.

Since w{q}k(q)+1 = dℓ{q}k(q)+1
− P̂V

q

k(q)
dℓ{q}k(q)+1

and P̂V
q

k(q)
is hermitian (9) follows.

Notice that, since the vectors w̃{q}k(q)+1 will be used for subsequent approximations, the opti-

mized ranking of blocks (9) does not require significant extra computational effort. Only Q − 1 of

these vectors will not have been otherwise used when the algorithm stops. Apart from that, the

complexity of selecting the blocks remains being that of finding the maximum element of an array

of length Q, i.e. O(Q).

Before presenting the algorithm details we would like to consider also the optimization of the

selection of atoms (stage a) of a HBW pursuit strategy). Within our implementation the optimized

selection of atoms is readily achievable by the Optimized Orthogonal Matching Pursuit (OOMP)

approach [16], which selects the index ℓ{q}k(q)+1 through the maximization process:

ℓ{q}k(q)+1 = argmax
n=1,...,M

∣∣〈dn, r
k(q){q}

〉∣∣

(1− s{q}n)
1
2

, with s{q}n =

k(q)∑

i=1

| 〈dn, w̃{q}i〉 |2. (10)

The OOMP selection criterion (10) minimizes, in a stepwise sense, the norm of the local error when

approximating a single block [16]. The extra computational cost, in comparison to the OMP selection

step (c.f. (2)) is the calculation of the sum s{q}n in the denominator of (10), for every atom in the

dictionary, n = 1, . . . ,M . As becomes clear in Algorithm 3, by saving the sum of previous iterations,

at iteration k(q) + 1 only the inner products
〈
dn, w̃{q}k(q)

〉
, n = 1, . . . ,M need to be calculated.
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2.1 Algorithmic Implementation

The implementation details of the HBW-OOMP method is given in Algorithm 1, which is realized

through Algorithms 2 and 3. For a fixed number K the algorithm iterates until the condition

∑Q
q=1 k(q) = K is met.

2.2 Trigonometric dictionaries and sparse representation of music sig-

nals

The viability of a sparse representation for a given signal depends in large part on the dictionary

choice. In the case of audio signals dictionaries consisting of Gabor atoms [4], combinations of

Gabor atoms [19, 20], and Gaussian chirp atoms [21] have been previously considered. In general

those dictionaries are very redundant. The greedy algorithm associated with the atom’s selection

is the MP one, or dedicated versions of MP which exploit further the atom’s localization. Less

redundancy is involved in dictionaries arising by union of modified discrete cosine transform bases

at different scales [22], which have also been explored using the MP algorithm. The particularity

of the dictionaries we consider here is that of being appropriate for approximating by partitioning,

which motivates the HBW implementation of greedy strategies. A possibility to secure a suitable

dictionary for this purpose would involve learning techniques [23–26]. Another possibility, specially

for image approximation, is to build the dictionary using atoms of different nature [27]. However,

as will be illustrated by numerical examples, when considerations are restricted to music signals

the combination of a Redundant Discrete Cosine Dictionary (RDCD) Dc and a Redundant Discrete

Sine Dictionary (RDSD) Ds, defined below, may produce stunning sparsity levels for relatively low

redundancy, if the selection is carried out by the proposed techniques.

• Dc = { 1
wc(n)

cos π(2i−1)(n−1)
2M

, i = 1, . . . , Nb}Mn=1.

• Ds = { 1
ws(n)

sin π(2i−1)(n)
2M

, i = 1, . . . , Nb}Mn=1,
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Algorithm 1 HBW-OOMP Procedure

Input: Signal partition f{q} ∈ RNb , q = 1, . . . , Q. Dictionary D = {dn ∈ RNb ; ‖dn‖ = 1}Mn=1.

Number K of total atoms to approximate the whole signal.

Output: Sets Γ{q}, q = 1, . . . , Q containing the indices of the selected atom for each block.

Orthonormal and biorthogonal sets {w̃{q}n}
k(q)
n=1 and {b{q}n}

k(q)
n=1, for each block (c.f. (4) and (7)

respectively). Coefficients of the atomic decompositions for each block {c{q}n}k(q)n=1, q = 1, . . . , Q.

Approximation of the partition, fa{q}, q = 1, . . . , Q. Approximation of the whole signal fa.

{Initialization}
j = 0

for q = 1 : Q do

k(q) = 1; r{q} = f{q}; s{q}n = 0, n = 1, . . . ,M

{Select the potential first atom for each block, as below}
ℓ{q} = argmax

n=1,...,M
|〈dn, f{q}〉|

χ(q) =
∣∣〈dℓ{q}, f{q}

〉∣∣ {Store the maximum for each block}
Set w{q}1 = dℓ{q}; w̃{q}1 = w{q}1; b{q}1 = w̃{q}1; Γ{q} = ∅

end for

while j < K do

{Select the block to be approximated (c.f.(9)) and store the index of the atom in the approxi-

mation of that block, as below}
q⋆ = argmax

q=1,...,Q
χ(q)

Γ{q⋆} ← Γ{q⋆} ∪ ℓ{q⋆}
{Update the residue corresponding to block q⋆, as below}
r{q⋆} ← r{q⋆} − w̃{q⋆}k(q⋆)

〈
w̃{q⋆}k(q⋆), f{q⋆}

〉

if k(q⋆) > 1 then

{Upgrade the biorthogonal set {b{q⋆}n}k(q
⋆)

n=1 to include the atom dℓ{q⋆} (c.f. (7))}
end if

{Apply Algorithm 2 to select the index ℓ{q⋆} for a new potential atom for the block q⋆}
Increase k(q⋆)← k(q⋆) + 1

{Compute w{q⋆}k(q⋆) and w̃{q⋆}k(q⋆) from dℓ{q⋆}, (c.f. (3) and (4)}
{Update the objective functional χ for the block q⋆}
χ(q⋆) =

∣∣〈w̃{q⋆}k(q⋆), f{q⋆}
〉∣∣

Increase j ← j + 1

end while

{Calculation of coefficients and approximation}
for q = 1 : Q do

fa{q} = f{q} − r{q}; c{q}n = 〈b{q}n, f{q}〉 , n = 1, . . . , k(q)

end for

{Concatenation of the partition to produce the whole signal approximation}
fa = Ĵ

Q

q=1f
a{q}

11



Algorithm 2 Atom Selection Procedure

Input: Residue r{q⋆}. Dictionary D = {dn ∈ R
Nb ; ‖dn‖ = 1}Mn=1. Auxiliary sequence

{s{q⋆}n}Mn=1 and vector w̃{q⋆}k(q⋆) for the upgrading. Set of already selected atoms Γ{q⋆}.

Output: Index ℓ{q⋆} corresponding to the selected atom dℓ{q⋆}.

{Apply the Auxiliary Procedure, Algorithm 3, to upgrade the sequence {s{q⋆}n}Mn=1 with respect

to vector w̃{q⋆}k(q⋆)}

{Select the index, as below}
ℓ{q⋆} = argmax

n=1,...,M
n/∈Γ{q⋆}

|〈dn, r{q⋆}〉|
(1− s{q⋆}n)

1
2

Algorithm 3 Auxiliary Procedure

Input: Dictionary D = {dn ∈ R
Nb ; ‖dn‖ = 1}Mn=1. Auxiliary sequence {s{q⋆}n}Mn=1 and vector

w̃{q⋆}k(q⋆) for the upgrading.

Output: Upgraded sequence {s{q⋆}n}Mn=1, with respect to w̃{q⋆}k(q⋆).
for n = 1 : M do

s{q⋆}n = s{q⋆}n +
∣∣〈dn, w̃{q⋆}k(q⋆)

〉∣∣2

end for

where wc(n) and ws(n), n = 1, . . . ,M are normalization factors as given by

wc(n) =






√
Nb if n = 1,√
Nb

2
+

sin(π(n−1)
M

) sin(
2π(n−1)Nb

M
)

2(1−cos( 2π(n−1)
M

))
if n 6= 1.

ws(n) =





√
Nb if n = 1,√
Nb

2
− sin(πn

M
) sin(

2πnNb
M

)

2(1−cos( 2πn
M

))
if n 6= 1.

For M = Nb each of the above dictionaries is an orthonormal basis, the Orthogonal Discrete Cosine

Basis (ODCB) and the Orthogonal Discrete Sine Basis (ODSB), henceforth to be denoted Bc and

Bs respectively. The joint dictionary is an orthonormal basis for M = Nb

2
, the Orthogonal Discrete

Cosine-Sine Basis (ODCSB) to be indicated as Bcs. For M > Nb, Dc is a RDCD and Ds a RDSD.

If M > Nb

2
Dcs = Dc ∪ Ds becomes a Redundant Discrete Cosine-Sine Dictionary (RDCSD).

For the sake of discussing a fast calculation of inner products with trigonometric atoms, given a

vector y ∈ R
M , let’s define

F(y, n,M) =

M∑

j=1

y(j)e− ı 2π
(n−1)(j−1)

M , n = 1, . . . ,M. (11)
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When M = Nb (11) is the Discrete Fourier Transform of vector y ∈ RNb , which can be evaluated

using FFT. If M > Nb (11) can still be calculated via FFT, with F(y, n,M) indicating that y is

padded with M − Nb zeros. Thus, (11) can be used to calculate inner products with the atoms in

dictionaries Dc and Ds. Indeed,

Nb∑

j=1

cos
π(2j − 1)(n− 1)

2M
y(j) = Re

(
e− ı π(n−1)

2M F(y, n, 2M)
)
, n = 1, . . . ,M. (12)

and
Nb∑

j=1

sin
π(2j − 1)(n− 1)

2M
y(j) = − Im

(
e− ı

π(n−1)
2M F(y, n, 2M)

)
, n = 2, . . . ,M + 1, (13)

where Re(z) indicates the real part of z and Im(z) its imaginary part.

The computation of inner products with trigonometric dictionaries via FFT is outlined in Algo-

rithm 4. For dictionaries Dc and Ds that procedure reduces the complexity for calculating the inner

products from O(NbM), per block, to O(2M log2 2M), per block. For dictionary Dcs the reduction

is larger: O(M log2M), because both the real and imaginary parts of the FFT are used. When

Algorithm 1 is applied with trigonometric dictionaries the pieces implemented by Algorithms 2 and

3 should be replaced by Algorithms 6 and 7, given in Appendix A. In addition to speeding the calcu-

lations via FFT, Algorithms 6 and 7 avoid storing the dictionary. In the case of the dictionary Dcs it

is assumed that both the Cosine and Sine components are of the same size and the first M
2
elements

of the dictionary are Cosine atoms.

Numerical Example I

The signal approximated in this example is a piece of piano melody shown in Fig 1. It consists of

N = 960512 samples (20 secs) divided into Q = 938 blocks with Nb = 1024 samples each. As sparsity

measure for a signal representation we consider the Sparsity Ratio (SR) defined as SR = N
K
, where

K is the total number of coefficients in the signal representation. As a measure of approximation

quality we use the standard Signal to Noise Ratio (SNR),

SNR = 10 log10
‖f‖2

‖f − fa‖2 = 10 log10

∑Nb,Q
i=1
q=1
|f{q}(i)|2

∑Nb,Q
i=1
q=1
|f{q}(i)− f a{q}(i)|2

.
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Algorithm 4 Computation of inner products with a trigonometric dictionary via FFT.

IPTrgFFT procedure: p =IPTrgFFT(r, 2M, Case)

Input: r ∈ R
Nb , M , number of elements in the dictionary, and Case (‘Cos’ or ‘Sin’).

Output: Vector p ∈ RM , with the inner products between r and ‘Cos’ or ‘Sin’ dictionaries.

{Computation of auxiliary vector t ∈ C2M to compute p.}
t = FFT(r, 2M) {FFT with (2M −Nb) zero padding}.

Case ‘Cos’

p(n) = 1
wc(n)

Re(eı
π(n−1)

2M t(n)), n = 1, . . . ,M{(c.f. (12))}
Case ‘Sin’

p(n− 1) = − 1
ws(n)

Im(eı
π(n−1)

2M t(n)), n = 2, . . . ,M + 1 {(c.f.(13))}
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Figure 1: Piano melody. Credit: Julius O. Smith, Center for Computer Research in Music and Acoustics

(CCRMA), Stanford University.

This numerical example aims at illustrating the following outcomes in relation to the signal in hand.

1) The approximation power of all the orthogonal basis and dictionaries defined above remarkably

improve if, instead of applying OMP/OOMP independently to approximate each block f{q}

up to the same SNR, the HBW-OMP/OOMP approach is applied to match the sparsity of the

whole signal.

2) For approximating the signal with the OMP/OOMP greedy strategies, the redundant dictio-

naries Dc and Dcs perform significantly better than any of the orthogonal basis Bc,Bs and

Bcs.
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Dict. OMP HBW-OMP OOMP HBW-OOMP

SR SNR SR SNR SR SNR SR SNR

Bc 14.38 25.0 14.38 35.19 14.38 25.0 14.38 35.19
Dc2 17.75 25.0 17.75 34.91 18.47 25.0 18.47 35.08
Dc4 19.39 25.0 19.39 34.64 19.80 25.0 19.80 34.95

Bs 7.65 25.0 7.65 28.31 7.65 25.0 7.65 28.31
Ds2 12.13 25.0 12.13 29.39 12.63 25.0 12.63 29.39
Ds4 13.17 25.0 13.17 29.34 13.42 25.0 13.42 29.33

Bcs 10.77 25.0 10.77 30.09 10.77 25.0 10.77 30.09
Dcs2 20.45 25.0 20.45 35.81 22.08 25.0 22.08 35.56
Dcs4 23.83 25.0 23.83 35.56 26.18 25.0 26.18 36.37

Table 1: Comparison of the approximation quality (SNR values) and sparsity (SR values) produced with
trigonometric basis Bc,Bs,Bcs and redundant trigonometric dictionaries, Dc2,Dc4,Ds2,Ds4,Dcs2, and Dcs4.
The second column shows the SR resulting when applying the block independent OMP approach to achieve
a SNR=25.0dB. The fifth column demonstrates the significant gain in SNR rendered by the HBW-OMP
strategy for the same sparsity. Further improvements of the same nature are shown in the last four columns
corresponding to the approaches OOMP and HBW-OOMP.

In oder to demonstrate 1) and 2) each of the blocks f{q} is approximated independently with

OMP/OOMP, up to SNR=25 dB. Redundant dictionaries, with redundancy 2 and 4, are simply

creating by setting M = 2Nb and M = 4Nb in the definitions of Dc and Ds, with Nb = 1024. They

will be denoted as Dc2, Ds2 and Dc4, Ds4, respectively. Approximations of the same quality are per-

formed with each of the orthonormal basis Bc,Bs and Bcs, and the mixed dictionaries Dcs2 = Bc ∪Bs

and Dcs4 = Dc2 ∪ Ds2. The results are presented in Table 1. As can be seen, the SR produced by

the redundant dictionaries Dc2,Dc4,Dcs2, and Dcs4 is substantially larger than that corresponding to

any of the orthogonal basis. Moreover, in all the cases the HBW-OMP/OOMP strategies improve

notoriously (up to 11 dB) upon the OMP/OOMP approaches applied independently to produce a

uniform SNR in the approximation of each block.

It is noticed that the highest sparsity is attained by the dictionaryDcs4 which, as already discussed,

involves the most effective implementation via FFT. It is also seen that HBW-OOMP over performs

HBW-OMP in terms of sparsity (the running times are similar). This will appear even more clearly

in Table 2, where the approximation of both methods are downgraded to produce a SNR of 25dB.

The next section discusses the HBW backward strategy which allows for removing atoms from the
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signal approximation, in a stepwise optimized fashion.

2.3 Hierarchized Blockwise Backwards OOMP

We extend here the Backward Optimized Orthogonal Matching Pursuit (BOOMP) strategy [28] to

select also the blocks from which the atoms are to be removed for downgrading the approximation

of a whole signal. The BOOMP strategy is stepwise optimal because it minimizes, at each step,

the norm of the error resulting by downgrading, by one atom, an atomic decomposition. This

result readily follows from the recursive equations for modifying vectors {b{q}n}
k(q)
n=1 to account

for the elimination of, say the j-th atom, from the set {dℓ{q}n
}k(q)n=1. For each q, the reduced set of

vectors {b{q}n}
k(q)
n=1
n 6=j

spanning the reduced subspace Vq
k(q)/j = span{dℓ{q}n

}k(q)n=1
n 6=j

can be quickly obtained

through the adaptive backward equations [28, 29]

b{q}n ← b{q}n − b{q}j
〈b{q}n,b{q}j〉
‖b{q}j‖2

, n = 1, . . . , j − 1, j + 1, . . . , k(q). (14)

Consequently, the coefficients of the atomic decomposition corresponding to the block q, from which

the atom dℓ{q}j
is taken away, are modified as

c{q}n ← c{q}n − c{q}j
〈b{q}j,b{q}n〉
‖b{q}j‖2

, n = 1, . . . , j − 1, j + 1, . . . , k(q). (15)

For a fixed value of q, the BOOMP criterion removes the coefficient c{q}j⋄ such that [28]

j⋄{q} = argmin
j=1,...,k(q)

|c{q}j|
‖b{q}j‖

. (16)

The equivalent criterion applies to the selection of the q⋄-block for the downgrading of the whole

approximation. The proof of the next proposition parallels the proof of (16) given in [28].

Proposition 2. Assume that the approximation of a signal is given as fa = Ĵ
Q

q=1f
a{q}, where fa{q} =

P̂V
q

k(q)
f{q}. Let j⋄{q}, q = 1, . . . , Q be the indices which satisfies (16) for each q. The block q⋄, from

where the atom dℓ{q⋄}j⋄{q⋄}
is to be removed, in order to leave an approximation fa↓ such that ‖fa− fa↓‖

takes its minimum value, satisfies the condition:

q⋄ = argmin
q=1,...,Q

|c{q}j⋄{q}|
‖b{q}j⋄{q}‖

. (17)
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Proof. Since at each step only one atom is removed from a particular block, say the q-th one, it holds

that ‖fa − fa↓‖ = ‖fa{q} − fa↓{q}‖. The identical steps as in [28] lead to the expression

fa{q} − fa↓{q} = b{q}j⋄{q}

〈
b{q}j⋄{q}, f{q}

〉

‖b{q}j⋄{q}‖2
. (18)

Thus ‖fa{q} − fa↓{q}‖2 =

∣∣∣
〈
b{q}j⋄{q}, f{q}

〉∣∣∣
2

‖b{q}j⋄{q}‖2
. Since

〈
b{q}j⋄{q}, f{q}

〉
= c{q}j⋄{q} it follows that

‖fa−fa↓ ‖ is minimized by removing the atom j⋄{q⋄} corresponding to the block q⋄ satisfying (17).

The HBW-BOOMP algorithm for downgrading a given atomic decomposition of a signal is pre-

sented in Algorithm 5.

Numerical Example II

In order to illustrate the backward approach, we change the information in the last four columns

of Table 1 to have the sparsity of all the approximations corresponding to SNR=25dB. For this we

downgrade the HBW-OMP/OOMP approximations to degrade the previous quality. As seen in Table

Dict. OMP HBW-BOOMP OOMP HBW-BOOMP

SR SNR SR SNR SR SNR SR SNR

Bc 14.38 25.0 25.56 25.0 14.38 25.0 25.56 25.0
Dc2 17.60 25.0 34.05 25.0 18.47 25.0 36.34 25.0
Dc4 19.25 25.0 37.01 25.0 19.80 25.0 39.06 25.0

Bs 7.65 25.0 13.67 25.0 7.65 25.0 13.67 25.0
Ds2 12.03 25.0 25.74 25.0 12.63 25.0 27.56 25.0
Ds4 13.11 25.0 28.18 25.0 13.42 25.0 29.59 25.0

Bcs 10.77 25.0 19.94 25.0 10.77 25.0 19.94 25.0
Dcs2 20.21 25.0 42.43 25.0 22.08 25.0 48.48 25.0
Dcs4 23.53 25.0 50.19 25.0 26.18 25.0 59.68 25.0

Table 2: Comparison of sparsity (SR values) for the same SNR. The HBW-BOOMP results are obtained
by degrading the HBW-OMP/OOMP approximation in Table 1 to SNR=25dB.

2, the result is that the sparsity increases drastically. The SR improves up to 128% (for the Dcs4

dictionary) in comparison with the standard application of the same approaches without ranking the

blocks. Notice also that the best SR result (for dictionary Dcs4), is 133% higher than the best SR

result for an orthogonal basis (the Bc basis).
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Algorithm 5 HBW-BOOMP

Input: Biorthogonal sets {b{q}n}
k(q)
n=1, q = 1, . . . , Q. Coefficients in the approximation of each

block {c{q}n}k(q)n=1, q = 1, . . . , Q. Sets of indices in the decomposition of each block Γ{q}, q =

1, . . . , Q. Number of total atoms for the downgraded approximation, Kd.

Output: Downgraded biorthogonal sets. Coefficients of the downgraded atomic decompositions

for each block. Indices of the remaining atoms.

{Initialization}
K = 0;

for q = 1 : Q do

k(q) = |Γ{q}| {Number of elements in Γ{q}}
K = K + k(q)

{Select the index of the potential first atom to be removed in each block, as below}
j⋄{q} = argmin

n=1,...,k(q)

|c{q}n|
‖b{q}n‖

χ↓(q) =
|c{q}j⋄{q}|
‖b{q}j⋄{q}‖

{Store the minimum}
end for

i = K

while i > Kd do

{Select the block to be downgraded, as below}
q⋄ = argmin

q=1,...,Q
χ↓(q)

{Apply backward biorthogonalization (c.f. (14)) to downgrade the biorthogonal set correspond-

ing to block q⋄, with respect to b{q⋄}j⋄{q⋄} and shift indices}
{Update the coefficients corresponding to block q⋄ (c.f. 15) and shift indices}
Downgrade the set Γ{q⋄} ← Γ{q⋄}/ℓ{q⋄}j⋄{q⋄} and shift indices

Decrease k(q)← k(q)− 1

{Select the new potential atom to be removed from block q⋄, as below}
j⋄{q⋄} = argmin

n=1,...,k(q)

|c{q⋄}n|
‖b{q⋄}n‖

{Update the objective functional χ↓ for the block q⋄, as below}
χ↓(q

⋄) =
|c{q⋄}j⋄{q⋄}|
‖b{q⋄}j⋄{q⋄}‖

Decrease i← i− 1

end while
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3 Refinement by Swaps

The suitability of the HBW strategy for approximating the class of signals we are considering is a

notable fact. However, the possibility of approximating every element of the partition completely in-

dependent of the others has the convenient feature of leaving room for straightforward parallelization.

This is particularly important for implementations on Graphics Processing Units (GPU), for instance.

Accordingly, an alternative worth exploring is to maintain the block independent approximation but

allowing for possible eventual HBW refinements.

Assuming that the approximation (1) of each block in a signal partition is known, the goal now

is to improve the signal approximation maintaining unaltered the total number of atoms K. The

proposed refinement consists of movement of atoms controlled by the following instructions:

i) Use criterion (17) to remove one atom from the block q⋄. Let us call this block a ‘donor’ block

and indicate it with the index qd.

ii) Use criterion (9) to incorporate one atom in the approximation of the block q⋆. Let us call this

block a ‘receiver’ and indicate it with the index qr.

iii) Denote by δd the square norm of the error introduced at step i)by downgrading the approx-

imation of the donor block qd. Denote by δr the square norm of the gain in improving the

approximation of the receiver qr. Proceed according to the following rule:

If δr > δd accept the change and repeat steps i) and ii). Otherwise stop.

The above procedure is termed HBW-SbR-OMP/OOMP according to whether the selection of the

atom at stage ii) is realized through the OMP (c.f. (2)) or OOMP (c.f. (10)) criterion.

Notice that the HBW-SbR-OMP/OOMP methods, implemented as proposed above, possess the

desirable feature of acting only if the approximation can be improved by the proposed swap. The

possible situation for which qr = qd corresponds to a swap in the original SbR-OMP/OOMP approach

[17], which may take place here as a particular case.
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Implementation Remark: For successive implementation of the steps i) and ii) one needs: to

downgrade the vectors b{q⋄}n, n = 1, . . . k(q) at step i) and to upgrade these vectors at step ii). In

order to allow for step ii) the orthogonal set {w{q⋄}n}k(q)n=1 has to be downgraded as well. This can

be realized effectively by the plane rotation approach [30, 31].

Numerical Example III

We illustrate the HBW-SbR-OMP/OOMP approaches by applying them to the signal in Fig. 2,

which is a flute exercise consisting of N = 96256 samples divided into Q = 94 blocks with Nb = 1024

samples each.

Table 3 and 4 show the improvement in quality obtained by applying the HBW-SbR-OMP/OOMP
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Figure 2: Flute exercise: N = 96256 samples.

approaches on outputs of the OMP/OOMP approximations. Notice that in most cases the SNR

results are practically equivalent to those obtained by the HBW-OMP/OOMP approaches.

4 Processing of large signals

As already discussed, the additional computational complexity introduced by the HBW raking of

Q blocks is only O(Q) (over the complexity of a standard pursuit algorithm implemented without

ranking the blocks). Storage does become more demanding though. The need for saving vectors (7)

and (3), for instance, implies to have to store 2K vectors of size Nb. This requirement restricts the

amount of blocks to be processed with a small system such as a standard laptop. Hence, we outline
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Dict. SR OMP Swaps HBW-SbR-OMP HBW-OMP

Bc 10.13 25.0 1426 26.80 26.79
Dc2 14.26 25.0 1013 26.69 26.67
Dc4 15.58 25.0 945 26.63 26.61

Bs 7.27 25.0 2612 26.72 26.73
Ds2 12.10 25.0 1397 27.24 27.27
Ds4 13.16 25.0 1435 27.27 27.25

Bcs 8.08 25.0 1822 26.65 26.65
Dcs2 29.00 25.0 636 27.38 27.37
Dcs4 35.17 25.0 518 27.36 27.36

Table 3: Comparison of quality (SRN values) for a fixed sparsity: that corresponding to SRN=25 with
the OMP approach. The forth column shows the number of swaps and the fifth columns the SRN achieved
by those swaps through the HBW-SbR-OMP refinement to the outputs yielding the second column. For
further comparison the last column shows the results corresponding to the HBW-OMP approach.

Dict. SR OOMP Swaps HBW-SbR-OOMP HBW-OOMP

Bc 10.13 25.0 1426 26.80 26.79
Dc2 14.83 25.0 865 26.66 26.68
Dc4 15.80 25.0 929 26.60 26.61

Bs 7.27 25.0 2612 26.72 26.73
Ds2 12.58 25.0 1531 27.14 27.27
Ds4 13.34 25.0 1445 27.27 27.26

Bcs 8.08 25.0 1822 26.65 26.65
Dcs2 33.47 25.0 556 27.64 27.63
Dcs4 42.05 25.0 228 27.10 27.69

Table 4: Same description as in Table 3 but for the OOMP, HBW-SbR-OOMP, and HBW-OOMP ap-
proaches.

here a processing scheme which makes it possible the application of HBW techniques on very large

signals. For this the whole signal needs to be divided into large segments of convenient size, say

Ns. More specifically, a number of, say P blocks, of size Nb are grouped together to form S larger

segments g{s} = Ĵ
sP

q=(s−1)P+1f{q}, s = 1, . . . , S, where it is assumed that NbP = Ns and SNs = NbQ.

Each segment g{s} ∈ RNs is approximated with a HBW strategy as an entire individual signal. The

approximation of the original signal is assembled at the very end of the process by the operation

fa = Ĵ
S

s=1g
a{s}. In other words, the processing of large signals is realized by chopping the signal

into segments and processing each segment independently of the others. Nevertheless, the question

as to how to set the sparsity constraint for each segment needs further consideration. One could,
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of course, require the same sparsity in every segment, unless information advising otherwise were

available. While uniform sparsity guarantees the same sparsity on the whole signal, in particular

cases, where the nature of the signal changes over its range of definition, it would not render the

best approximation. In order to avoid encountering this type of situation we introduce a preliminary

step: the randomization of all the small blocks in the signal partition. The implementation is carried

out as follows:

i) Given a signal f split it into Q blocks of size Nb. Apply an invertible random permutation Π

to scramble the block’s location (the bottom graph in Figure 3 provides a visual illustration of

how the signal in the top graph looks after this step). Let’s denote the re-arranged signal by

f̃ = Ĵ
Q

q=1f̃{q}.

ii) Group every P of the blocks f̃{q}, q = 1, . . . , Q to have S segments g̃{s} = Ĵ
sP

q=(s−1)P+1f̃{q}, s =

1, . . . , S = Q
P
.

iii) Approximate each of the segments g̃{s} independently of the others, as it each segment were

an entire signal, i.e., obtain g̃a{s} = Ĵ
sP

q=(s−1)P+1f̃
a{q}, s = 1, . . . , S.

iv) Assemble the segments to have the approximation of the whole signal as f̃a = Ĵ
S

s=1g̃
a{s}.

v) Reverse the permutation of the block’s location to obtain, from f̃a, the approximation of the

original signal fa.

Numerical Example IV

The signal to be approximated is a 32.5 secs (1433600 samples) piece of Piazzola music, shown

in the top graph of Figure 3. It is partitioned into Q = 1400 blocks of 1024 points each. Af-

ter randomization (bottom graph of the same figure) the blocks are grouped into 50 segments,

each of which is independently approximated by the HBW-OMP/OOMP approach to produce a

SR=11.53. The resulting SNR of the approximated signal is 29.12 dB with HBW-OMP and 30.15 dB
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Figure 3: The top graph shows a piece (1433600 samples) of Piazzola music interpreted by Gidon Kremmer

and orchestra. The bottom graph shows the resulting signal after the randomization of the blocks.

with HBW-OOMP. Equivalent approximation quality is obtained with other realizations of the ran-

dom process. For appreciation of this result the original signal was also approximated by HBW-

OMP/OOMP, but without segmentation. In that case the quality corresponding to SR=11.53 is

only 1.9% higher (SNR=29.66 dB with HBW-OMP and SNR=30.73 dB with HBW-OOMP). The

conclusion is that, even if the largest the segments the less the distortion for the same sparsity, apply-

ing HBW-OMP/OOMP on segments of a large signal may be still significantly more advantageous

than the independent approximation of the blocks. Indeed, in this example the latter yields a SNR

of 25 dB with OMP and 26.1 dB with OOMP.

5 Conclusions

Cooperative greedy pursuit strategies for approximating a signal partition subjected to a global

constraint on sparsity have been considered. The cooperation between partition units was real-

ized in several ways: i)By ranking the partition units for their sequential stepwise approximation

(HBW-OMP/OOMP) ii)By ranking the partition units for stepwise downgrading of the whole ap-

proximation (HBW-BOOMP) iii)By allowing for downgrading of some partition units (donors) and

upgrading of another partitions units (receivers), to improve the approximation quality (HBW-SbR-

OMP/OOMP). Comparisons of the OMP and OOMP criteria indicate that for the type of dictionaries

23



and signals considered here, the OOMP criterion renders improvements of sparsity up to 20% in re-

lation to the equivalent strategy involving OMP.

The HBW algorithms maintain the complexity comparable with the totally independent approxi-

mation of each partition unit. The examples presented here, using trigonometric dictionaries for

achieving high quality approximation of musics signals, provide a clear illustration of the benefits

arising by the proposed strategies. Indeed, for a piano melody the increment in sparsity is 128%

higher than the sparsity produced by approximating each partition unit up to same quality. Com-

parison of trigonometric dictionaries results, against results obtained with trigonometric basis, give

an improvement of equivalent order: 133%. The mixed Cosine-Sine dictionary has yielded the best

sparsity results, not only for the test signals included in this paper but for a significant number of

other signals, all in the category of melodic music.

Because the proposed HBW implementation of pursuit strategies requires storage of order NbK (Nb

being the length of each block in the partition and K the number of total atoms to approximate the

whole signals) a simple procedure for processing large signal was proposed: Previous to dividing the

signal into independent segments, each of which to be approximated with the identical constraint of

sparsity, the randomization of the partition units is advised.
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Appendix A

Algorithm 6 Atom Selection Procedure via FFT

Input: Residue r{q⋆}. Dictionary Case (‘Cos’, ‘Sin’ or mixed ‘Cos-Sin’) and number of elements,

M . Sequence {s{q⋆}n}Mn=1 if Case is ‘Cos’ or ‘Sin’, and {sc{q⋆}n}
M
2
n=1, {ss{q⋆}n}

M
2
n=1 if Case is ‘Cos-

Sin’. Vector w̃{q⋆}k(q⋆) to upgrade the sequences. Set of already selected atoms Γ{q⋆} (sets Γc{q⋆}

and Γs{q⋆} with the atoms in each component if Case is ‘Cos-Sin’).

Output: Selected index ℓ{q⋆} for a potential new atom for block {q⋆}.

Cases single ‘Cos’ or ‘Sin’

{Call IPTrgFFT procedure, Algorithm 4, to calculate inner products, and apply Algorithm 7 to

upgrade the sequence {s{q⋆}n}Mn=1 with respect to vector w̃{q⋆}k(q⋆)}

p=IPTrgFFT(r{q⋆}, 2M, Case),

{Select the index for a new potential atom for the block q⋆, as below}

ℓ{q⋆} = argmax
n=1,...,M
n/∈Γ{q⋆}

|p{q⋆}(n)|
(1− s{q⋆}n)

1
2

Case ‘Cos-Sin’

{Same precedure as for the previous case but for both ‘Cos’ and ‘Sin’ cases},

pc{q⋆}=IPTrgFFT(r{q⋆},M ‘Cos’); ps{q⋆}=IPTrgFFT(r{q⋆},M, ‘Sin’)

{Apply Algorithm 7 to upgrade the sequences {sc{q⋆}n}
M
2
n=1 and {ss{q⋆}n}

M
2
n=1 and selec the index}

ℓc{q⋆} = argmax
n=1,...,M

2
n/∈Γc{q⋆}

|pc{q⋆}(n)|
(1− sc{q⋆}n)

1
2

; ℓs{q⋆} = argmax
n=1,...,M

2
n/∈Γs{q⋆}

|ps{q⋆}(n)|
(1− ss{q⋆}n)

1
2

{Evaluate the maximum value, as below}

µc{q⋆} = |pc{q⋆}(ℓc{q⋆})|
(1− sc{q⋆}ℓc{q⋆})

1
2

; µs{q⋆} = |ps{q⋆}(ℓs{q⋆})|
(1− ss{q⋆}ℓs{q⋆})

1
2

µ{q⋆} = max(µc{q⋆}, µs{q⋆})

if µ = µc then

ℓ{q⋆} = ℓc{q⋆}

else

ℓ{q⋆} = ℓs{q⋆}+ M
2

end if
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Algorithm 7 Auxiliary Procedure via FFT

Input: Vector w̃{q⋆}k(q⋆). Dictionary Case: ‘Cos’, ‘Sin’ or ‘Cos-Sin’, and number of elements

M . Sequence {s{q⋆}n}Mn=1, for Cases ‘Cos’ and ‘Sin’, or {sc{q⋆}n}
M
2
n=1, and {ss{q⋆}n}

M
2
n=1, for Case

‘Cos-Sin’.

Output: Upgraded sequence, {s{q⋆}n}Mn=1, for Cases ‘Cos’ and ‘Sin’, or {sc{q⋆}n}
M
2
n=1 and

{ss{q⋆}n}
M
2
n=1 for Case ‘Cos-Sin’.

Case ‘Cos’ or ‘Sin’

{Call IPTrgFFT procedure, Algorithm 4, to calculate inner products with vector w̃{q⋆}k(q⋆)}

p{q⋆}=IPTrgFFT(w̃{q⋆}k(q⋆), 2M, Case)

{Upgrade the sequence, as below}

for n = 1 : M do

s{q⋆}n = s{q⋆}n + |p{q⋆}(n)|2

end for

Case ‘Cos-Sin’

{Call IPTrgFFT procedure, Algorithm 4, to calculate the inner products between vector w̃{q⋆}k(q⋆)
and each of the dictionary components: Cases ‘Cos’ and ‘Sin’}

pc=IPTrgFFT(w̃{q⋆}k(q⋆),M, ‘Cos’)

ps=IPTrgFFT(w̃{q⋆}k(q⋆),M, ‘Sin’)

{Upgrade the sequences, as below}

for n = 1 : M
2
do

sc{q⋆}n = sc{q⋆}n + |pc{q⋆}(n)|2

ss{q⋆}n = ss{q⋆}n + |ps{q⋆}(n)|2

end for
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