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Abstract

Background: The electrocardiogram (ECG) is one of the most common primary tests
to evaluate the health of the heart. Reliable automatic interpretation of ECG records is
crucial to the goal of improving public health. It can enable a safe inexpensive monitoring.
This work presents a new methodology for morphological characterisation of heartbeats,
which is placed outside the usual machine learning framework.

Method: The proposal considers the sparsity of the representation of a heartbeat as a
parameter for its morphological characterisation. The approach involves greedy pursuit
strategies for selecting elements from redundant dictionaries, which should be previously
learnt from examples of the classes to be characterised. Using different metrics of sparsity,
the dictionary rendering the smallest sparsity value, for the equivalent approximation
quality of a new heartbeat, characterises the morphology of that beat. This study focuses
on a procedure for learning the dictionaries and compares several metrics of sparsity for
morphological characterisation on the basis of those metrics.

Results: The suitability of the method is illustrated by binary differentiation of Normal
and Ventricular heartbeats in the MIT-BIH Arrhythmia data set. In general classification
the sensitivity and predictivity scores for Ventricular beats are 97.6% and 99.7%, respec-
tively. In interpatient assessment these scores drop to 92.4% and 97.8%. Due to the huge
difference in the number of Normal and Ventricular beats in the whole data set even a
small proportion of misidentified Normal beats amounts to a much larger proportion of
false Ventricular beats. This produces a comparatively lower value of the F1 metric for
Ventricular beats.

Conclusions: The results are encouraging because the proposed binary identification is
realised outside the usual machine leaning framework. Thus, extensions of the approach to
allow for combination with other features and other machine leaning techniques are read-
ily foreseen. It is from this perspective that the approach should be appreciated, because
a morphological feature in isolation does not provide complete information for classifi-
cation of different types of heartbeats. The numerical tests, designed to emphasise the
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interpretability and reliability of the approach, demonstrate the potential of the method
to contribute towards the development of a well grounded expert system for classification
of heartbeats in ECG records.

Keywords. Automation of heartbeat identification. Sparse representations. Greedy pur-
suit strategies. Computerised ECG interpretation.
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1 Introduction

Cardiovascular diseases (CDVs) are a group of disorders of the heart and blood vessels, including
coronary heart disease, rheumatic heart disease and other conditions. These diseases are the
leading cause of global death. The World Health Organisation (WHO) estimates that 32% of
all deaths worldwide are caused by CDVs. In addition to preventing CDVs by maintaining a
healthy lifestyle, early detection can curb mortality rates for heart disease patients and also for
people with increased risk of this condition.

An electrocardiogram (ECG) is a safe and non-invasive procedure that detects cardiac ab-
normalities by measuring the electrical activity generated by the heart as it contracts. Sensors
attached to the skin are used to detect the electrical signals produced by the heart each time
it beats. These signals are analysed by a specialist to assess if they are unusual. Computerised
ECG analysis plays a critical role in clinical ECG workflow. It is predicted that in the future
full automated analysis of ECG may become more reliable than human analysis.

Automation of ECG interpretation has been successfully addressed by Artificial Intelligence
(AI) methods which fall within the end-to-end deep learning framework [1–4]. However, due to
the over-parameterised black-box nature of this framework [5] it is difficult to understand how
deep models make decisions. Besides, interpretation using Deep Neural Networks (DNN) has
been shown to be susceptible to adversarial attacks [6,7]. Automatic classification of heartbeats
has also been addressed by different techniques of machine learning which rely on the ability
to extract distinctive features of the beats in each class. Reviews and summaries of these
techniques can be found in [8–11].

In this work we present an alternative viewpoint for the specific task of morphological iden-
tification of heartbeats. We base the proposed method on the ability to model the morphology
of a heartbeat as superposition of elementary components. We work under the assumption that
there exits a set of elementary component which is better suited for representing heartbeats
of certain morphology than others. Inspired by a previous work on face recognition [12], we
consider that the sets of elementary components are redundant. However, we differ from [12]
in the methodology and also in that here the redundant sets are to be learnt from data. The
common ground between the approaches is that both base the identification criterion on the
concept of sparsity.

In the signal processing field, a signal approximation is said to be sparse if it belongs to a
subspace of much smaller dimensionality than that of the space where the signal comes from.
The search for the approximation subspace is carried out using a redundant set, called a ‘dic-
tionary’. Only a few elements of the dictionary, called ‘atoms’, are finally used for constructing
the signal approximation, called ‘atomic decomposition’. Sparse approximation of heartbeats
is applied in [13] for classification using Gabor dictionaries. The particular Gabor’s atoms in-
volved in the representation of the beats, as well as the coefficients in the atomic decomposition,
are taken as features to feed machine learning classifiers. Contrarily, our proposal relies on the
possibility of learning dictionaries, which play themselves a central role in the decision making
process. To the best of our knowledge this setup has not been considered before. We focus on
the layout of the approach and test it for binary classification.

The paper is organised as follows. Sec. 2 discuses the greedy pursuit strategies to be con-
sidered, as well as the method for learning the dictionaries. The sparsity metrics supporting
the discrimination criteria are also introduced in this section. The numerical tests illustrating
the approach are placed in Sec. 3. The conclusions are drawn in Sec. 4.
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2 Signal representation using dictionaries

We start this section by introducing some basic notation. Throughout the paper R represents
the set of real numbers, and N and Z the sets of natural and integer numbers respectively.
Boldface lower case letters indicate Euclidean vectors and boldface capital letters indicate
matrices. The corresponding components are indicated using standard mathematical fonts
e.g., d ∈ RN is a vector of components d(i) ∈ R, i = 1, . . . , N and G ∈ RN×M is a matrix of
components G(i, j), i = 1, . . . , N, j = 1, . . . ,M . The Euclidean inner product ⟨·, ·⟩ between
vectors in RN is defined as

⟨d,g⟩ =
N∑
i=1

d(i)g(i).

This definition induces the 2-norm ∥g∥ =
√
⟨g,g⟩. The 1-norm of a vector g ∈ RN , is indicated

as ∥g∥1 and calculated as ∥g∥1 =
∑N

i=1 |g(i)|.
The inner product between matrices in RN×M is the Frobenius inner product, which is

defined as

⟨F,G⟩F =
N∑
i=1

M∑
j=1

F (i, j)G(i, j).

This definition induces the Frobenius norm ∥G∥F =
√
⟨G,G⟩F . The transpose of a matrix G

is indicated as G⊤.
Given a signal f as a vector in RN , the K-term atomic decomposition for its approximation

is of the form

fK =
K∑

n=1

c(n)dℓn , (1)

where the elements dℓn , called atoms, are chosen from a redundant set D = {dn,∈ RN , ∥dn∥ =
1, n = 1, . . . ,M}, called dictionary. The set of all linear combination of elements in D is
denoted as span{D}. The problem of how to select from D the K elements dℓn , n = 1 . . . , K
such that ∥f − fK∥ is minimal is intractable (there are N !

(N−K)!K!
possibilities). In practical

applications the problem is addressed by ‘tractable’ methods. For the most part these methods
are realised by

(a) Expressing fK =
∑M

n=1 c(n)dn using only K-nonzero coefficients minimising the 1-norm
∥c∥1 [14].

(b) Using a greedy pursuit strategy for stepwise selection of theK elements dℓn , n = 1, . . . , K,
for producing the approximation (1).

We restrict consideration to greedy pursuit algorithms, because for the application we are
considering these types of methods are effective and faster than those based on minimisation
of the 1-norm.

2.1 Pursuit Strategies

In the context of signal processing the simplest pursuit strategy is known under the name of
Matching Pursuit (MP) [15]. Depending on their implementation and context of application
variations of the MP approach can also be found under different names. We discuss here a
refinement of MP known as Orthogonal Matching Pursuit (OMP) [16] as well as the stepped
wise optimised version termed Optimised Orthogonal Matching Pursuit (OOMP) [17].
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2.1.1 From MP to OMP

The MP algorithm evolves by successive approximations as follows: Setting k = 0 and starting
with an initial approximation f0 = 0 and residual r0 = f , the algorithm progresses by sub-
decomposing the k-th order residual in the form

rk =
〈
dℓk+1

, rk
〉
dℓk+1

+ rk+1, (2)

where dℓk+1
is the atom corresponding to the index selected as

ℓk+1 = argmax
n=1,...,M

|
〈
dn, r

k
〉
|. (3)

This atom is used to update the approximation fk as

fk+1 = fk +
〈
dℓk+1

, rk
〉
dℓk+1

. (4)

From (2) it follows that ∥rk+1∥ ≤ ∥rk∥, since

∥rk∥2 = |
〈
dℓk+1

, rk
〉
|2 + ∥rk+1∥2. (5)

It is easy to prove that in the limit k → ∞, the sequence fk given in (4) converges to f ,
if f ∈ VM = span{D}, or to P̂VM

f the orthogonal projection of f onto VM , if f /∈ VM (a
pedagogical proof can be found on [18]). However, the method is not stepwise optimal because
it does not yield an orthogonal projection at each step. Accordingly, the algorithm may select
linearly dependent atoms, which is the main drawback of MP when applied with highly coherent
dictionaries. A refinement to MP, which does yield an orthogonal projection approximation at
each step is called OMP [16]. The method selects the atoms as in (3) but at each iteration
produces a decomposition of the signal as given by:

f = fk + r̃k =
k∑

n=1

ck(n)dℓn + r̃k, (6)

where the coefficients ck(n) are computed in such a way that it is true that

k∑
n=1

ck(n)dℓn = P̂Vkf , with Vk = span{dℓn}kn=1.

The superscript of ck(n) in (6) indicates the dependence of these quantities on the iteration
step k. Thus, in addition to selecting linearly independent atoms, OMP yields the unique
element fk ∈ Vk minimising ∥f − fk∥. As discussed next, a further refinement to OMP, called
OOMP [17], selects also the atoms in order to minimise in a stepwise manner the norm of the
residual error.

2.1.2 The OOMP method

The OOMP approach iterates as follows. The algorithm is initialised by setting: r0 = f , f0 = 0,
Γ = ∅ and k = 0. The first atom is selected as the one corresponding to the index ℓ1 such that

ℓ1 = argmax
n=1,...,M

∣∣〈dn, r
0
〉∣∣2 . (7)

This first atom is used to assign w1 = dℓ1 = β1, calculate r1 = f − dℓ1 ⟨dℓ1 , f⟩, and iterate as
prescribed below.
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1) Upgrade the set Γ ← Γ ∪ ℓk+1, increase k ← k + 1, and select the index of a new atom
for the approximation as

ℓk+1 = argmax
n=1,...,M

n/∈Γ

|
〈
dn, r

k
〉
|2

1−
∑k

i=1 | ⟨dn, w̃i⟩ |2
, with w̃i =

wi

∥wi∥2
. (8)

2) Compute the corresponding new vector wk+1 as

wk+1 = dℓk+1
−

k∑
n=1

wn

∥wn∥22

〈
wn,dℓk+1

〉
. (9)

including, for numerical accuracy, the re-orthogonalisation step:

wk+1 ← wk+1 −
k∑

n=1

wn

∥wn∥22
⟨wn,wk+1⟩ . (10)

3) Upgrade vectors βk
n as

βk+1
k+1 =

wk+1

∥wk+1∥2
, βk+1

n = βk
n − βk+1

k+1

〈
dℓk+1

,βk
n

〉
, n = 1, . . . , k. (11)

4) Upgrade vector rk as

rk+1 = rk − ⟨wk+1, f⟩
wk+1

∥wk+1∥2
. (12)

5) If for a given ρ value the condition ∥rk+1∥ < ρ has been met stop the selection process.
Otherwise repeat steps 1) - 5).

Calculate the coefficients in (1) as

c(n) =
〈
βk

n, f
〉
, n = 1, . . . , k.

Calculate the final approximation fk as

fk = f − rk.

Remark 1. The difference between our implementations of OMP and OOMP is only that for
OMP the denominator in (8) is eliminated. The selection is realised as in MP (c.f. (3)) which is
not a stepwise optimal selection. Instead, (8) selects the atom dℓk+1

which, fixing the previously
selected atoms dℓi , i = 1, . . . , k, minimises the distance ∥f − fk+1∥. The proof can be found
in [17].

Remark 2. Restricting consideration to sparse solutions, K ≪M with K and M as in Sec. 2,
the computational complexity of the Pursuit Strategies is dominated by the computation of the
inner product in the selection process, i.e. is O(NM). This complexity is high, in comparison
with constructing the K-term approximation with a fast transform. The complexity of selecting
the K-coefficients of larger magnitude of a discrete wavelet transform, for instance, is dominated
for the sort operation, which has average computational complexity O(N logN). Unfortunately
the wavelet decomposition would not be applicable in the proposed framework.
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2.2 Sparsity criterion for morphological feature extraction of heart-
beats

A digital ECG signal is a sequence of heartbeats, each of which is characterised by a combination
of three graphical deflections, known as QRS complex, and the so called P and T waves. An
idealised illustration of these deflections are given in Fig. 1.

Figure 1: Public domain graph of the QRS complex and P and T waves representing a normal
heartbeat.

However, as illustrated in Fig. 2, in real ECG records the shape of the beats in the same
class may vary.
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Figure 2: Two normal heartbeats from different ECG records

Approximation for morphological feature extraction of a heartbeat requires the segmentation
of the QRS complex. In this work the segmentation is realised by taking a fixed number of
samples to left and right of the location of the R-peak, to have beats of equal support, say Ns.
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Assuming that one wishes to morphologically differentiate heartbeats of, say class A, from
heartbeats of class B, and that a dictionaryDa, specially constructed to approximate a heartbeat
of class A, and a dictionary Db, specially constructed to approximate a heartbeat of class B, are
given, we discuss next several possibilities of using sparsity as a distinguishability criterion.

In order to decide whether a heartbeat fq ∈ RNs belongs to class A or class B this beat is
approximated, up to the same precision, using both dictionaries, i.e.

fa =
Ka∑
n=1

ca(n)dℓan , (13)

where the atoms dℓan are chosen from Da and

f b =

Kb∑
n=1

cb(n)dℓbn
, (14)

where the atoms dℓbn
are chosen from Db.

Criterion I (a) and (b)

If Ka < Kb the beat fq is assigned to class A.
If Kb < Ka the beat fq is assigned to class B.
If Ka = Kb the criterion does not make a decision.

In the event that Ka = Kb a decision could still be made by recourse to a different metric.

(a) Smaller entropy criterion: Assigning pa(n) = |ca(n)|
∥ca∥1 and pb(n) = |cb(n)|

∥cb∥1 calculate the corre-
sponding Shannon’s entropies

Sa = −
Ka∑
n=1

pa(n) ln(pa(n)),

Sb = −
Kb∑
n=1

pb(n) ln(pb(n)).

The entropy of, say pa(n), n = 1, . . . , Ka, would be smaller if the components are fewer and the
magnitude of some pa(n) much larger than others. In particular the minimum entropy value

occurs if pa(n) = |ca(n)|
∥ca∥1 = 1 for some n and zero otherwise, in which case Sa = 0. Accordingly,

if Sa < Sb the beat fq might be assigned to class A and if Sb < Sa the beat fq might be assigned
to class B. Let us recall that the criterion of smaller entropy was introduced for basis selection
in the context of wavelet packets [23].

(b) Smaller norm-1 criterion.
This criterion is in line with the basis pursuit approach [14] which adopts the minimisation of the
norm-1 as a way of producing a tractable sparse solution from a given dictionary. Consequently,
if ∥ca∥1 < ∥cb∥1 the beat fq is assigned to class A and if ∥cb∥1 < ∥ca∥1 the beat fq if be assigned
to class B.
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Criterion II

Use always the smaller entropy criterion.

Criterion III

Use always the smaller norm-1 criterion.

2.3 Dictionary learning

So far we have assumed to know the dictionaries Da and Db best suited for each class of
heartbeat. In this section we discuss how these dictionaries can be learnt from a data set of
annotated heartbeats.

The adopted strategy to learn a dictionary as a matrix D, using the heartbeats placed
in an array F ∈ RNs×Q, proceed through a 2 step process. All the superscripts k within the
algorithm indicate the corresponding quantity at iteration k. Setting k = 0, and given an initial
dictionary Dk, the algorithm iterates as below using the selected pursuit method.
Step 1

• Normalise the columns of the matrix Dk ∈ RNs×M and apply the greedy pursuit method
to approximate each beat fq ∈ RNs , for q = 1, . . . , Q, as in (13) or (14). Collect the
resulting vectors of coefficients ckq ∈ RKq .

• Place each vector ckq as a column of a matrix Ck ∈ RM×Q having nonzero elements

C(ℓqn, q)
k = cq(n)

k, n = 1, . . . , Kq
k, q = 1, . . . , Q and set all the other elements equal to

zero.

• Using matrix Ck and dictionary Dk calculate the approximation F̃ of F as

F̃k = DkCk

Step 2

• Using the approximation F̃k find the updated dictionary D̃ minimising ∥F− F̃k∥2F . Thus,

D̃ = argmin
D

∥F−DCk∥2F = FCk⊤(CkCk⊤)−1. (15)

• Given a maximum number of iterations, MaxIt say, and a tolerance tol for the error norm,
if ∥D̃ −Dk∥F < tol or k > MaxIt stop. Otherwise set k → k + 1, Dk = D̃, and repeat
Steps 1 and 2.

Remark 3. The dictionary updating equation (15) requires that matrix CkCk⊤ should have
an inverse. This would not be true if some elements in the dictionary were not chosen in the
previous step. In that case, the unselected atoms should be removed from the dictionary before
implementing equation (15). In practice, as long as Q is significantly larger than M and the

examples are independent, matrix CkCk⊤ has an inverse.

Remark 4. The problems of determining matrix Ck at Step 1 and matrix D̃ at Step 2 are
convex problems with unique solution. However, the combined problem of determining matrix
Ck and D̃ is not jointly convex. Thus, the solution depends on the initial dictionary. As will be
demonstrated by the simulations, this is not crucial within the context of the proposed approach.
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3 Binary morphological differentiation of heartbeats

In this section we test the proposal by differentiating the classes N (Normal) and V (Ventricular
Ectopic) in the MIT-BIH Arrhythmia data set [19, 20]. As per the recommendations given
by the Advancement of Medical Instrumentation (AAMI) the MIT-BIH Arrhythmia database
is projected into five classes. Within these classes the N beats considered here include: The
normal beats N, the Left Bundle Branch Block Beats (LBB) and the Right Bundle Branch
Block Beats (RBB). The V class comprises: the Premature Ventricular Contraction (PVC) and
Ventricular Escape Beats (VEB). While the number of V beats is much less than the number
of N beats, the former is still enough to learn the corresponding dictionary. The locations of
the R-peaks are retrieved from the annotations provided with the dataset, using the Matlab
software [21] available on [19]. The peaks are then segmented in order to capture the QRS
complex and P and T waves in a normal heartbeat (c.f. Fig. 1). Since the distance from the
R-peak to the end of the T wave is normally slightly larger than the distance to the end of the
P wave, the segmentation of a heartbeat is realised by taking 145 samples to the right and 110
samples to the left of the R-peak location (please see Fig. 2). Before learning the dictionary
a quick check of the training set is realised, in order to find out if there are some peaks that
would not qualify as ‘good’ examples. For this end we proceed as explained below.

Screening the data training sets

For automatic screening of a set the segmented beats of the same class are approximated, up
to the same quality, using a greedy pursuit algorithm and a general wavelet dictionary. We
illustrate the process by giving the details for screening the training set for the numerical Test
I.

Wavelet dictionaries arise from translations, by a parameter b = 2−l, l ∈ N of scaling
prototypes [24,25]

ϕj0,k,b (x) = ϕ
(
2j0x− bk

)
, k ∈ Z, (16)

and wavelet prototypes at different scales

ψj,k,b (x) = ψ
(
2jx− bk

)
, k ∈ Z, j ≥ j0. (17)

For screening of the training set we have used the 9/7 Cohen-Daubechies-Feauveau (cbf97)
wavelet family with b = 0.25, j0 = 2 and j = 3, 4, 5, 6, which introduces a redundancy factor of
2.67. This dictionary was generated with the software described in [26] available on [27]. The
scaling and wavelet prototypes for the cbf97 wavelet family are shown in Fig. 3.

The quality in the approximation of each beat is fixed using the prdn metric as defined by

prdn(q) =
∥fq − fkq ∥
∥fq − f q∥

× 100%, q = 1, . . . , Q,

where each fq is a heartbeat, fkq its corresponding approximation by k atoms, and f q the
mean value of fq. The approximation of different beats, up to the same prdn, is achieved for
different values of k. The left graph of Fig.4 shows the histograms of k values obtained when
approximating, up to prdn = 9, the N beats in the training set of the numerical Test I (c.f.
Sec. 3.1).

Even if not very noticeable, in the histogram there are a few values of k very far from the
main support. These values are from ‘rare’ signals that should be investigated. In this set they
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Figure 3: Graph of the scaling prototype ϕ(x) (left) and wavelet prototype ψ(x) (right) for the
cbf97 family.
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Figure 4: Histogram of k values for approximating (up to prdn = 9) the N-signals in the training
set (left graph). Signal corresponding to the outlying value k = 63 (right graph).

are just signals looking as pure noise, e.g. the signal in the right graph of Fig 4 corresponds
to k = 61, very far from the mean value, k = 14.31 with standard deviation std = 5.90.
When learning the dictionary for classification of N beats we disregard beats in the training set
producing values of k outside the range (k − 3 std, k + 3 std). This amounts to disregarding
2.58% of the total N beats in the training set.

The left graph of Fig.5 shows the histogram of k values obtained when approximating, up to
prdn = 9, the V beats in the training set of the numerical Test I. For this class k = 10.61 with
std = 3.28. Because the data set of V beats is smaller than the previous one, when learning the
dictionary for classification of V beats we disregard beats in the training set outside the range
(k − 2 std, k + 2 std). This amounts to disregarding 2.65% of the V beats in the training set.

3.1 Numerical Test I

The purpose of this test is to assess the suitability of binary morphological differentiation of
heartbeats using dictionaries learnt from examples of N and V shapes in the dataset. For this
end we randomly split the Q = 87277 N beats into two groups: 30000 N beats are used for
training the dictionary, Dn say. The remaining 57277 N beats are reserved for testing. Since
the V beats are much less than the N ones, 50% of the V beats are used for training the dictionary
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Figure 5: Histogram of k values for approximating (up to prdn = 9) the V-signals in the training
set (left graph). Signal corresponding the outlying value k = 41 (right graph).

Sets Training Testing

Class N V N V

Number of beats 30000 3359 57277 3359

Table 1: Number of heartbeats of classes N and V in the training and testing sets for Test I.

Dv, and the remaining 50% for testing (c.f. Table 1)
The dictionaries are learned to have redundancy two, i.e. each dictionary is a matrix of real

numbers of size 256× 512. We test the method against:
(i) The initial dictionary.
(ii) The different greedy pursuit algorithms considered in this work: MP, OMP, OOMP.

For this test we randomly take 512 beats from the 30000 N heartbeats in the training set
to construct a matrix Dn of size 256 × 512, which is used as initial dictionary. The learning
curves for the dictionary Dn with the 3 greedy algorithms are shown in left graph of Fig.6. We
repeat the process but taking the 512 dictionary atoms randomly from the 3359 V beats in the
training set. The learning curves for this dictionary are shown in the right graph of Fig.6.

The identification of V-beats performance is assessed by means of the true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) outcomes. These values are
used to calculate the following statistics metrics.

Sensitivity (SE): Number of correctly identified heartbeats, among the total number of that
class in the set, i.e.

SE =
TP

TP + FN
.

Specificity (SP): Number of correctly rejected heartbeats which are not in that class, i.e.

SP =
TN

TN+ FP
.
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Figure 6: Dictionary learning curves with the three greedy algorithms. The left graph corre-
sponds to dictionary Dn and the right graph to dictionary Dv.

Positive predictivity (PP): Ratio of correctly identified heartbeats to all the beats classified
as V.

PP =
TP

TP + FP
.

The combination of these metrics produces the F1 score which is defined as follows:

F1 =
2TP

2TP + FP + FN
=

2SEPP

SE + PP
.

Additionally, the total accuracy (AC) of the classification is calculated as the fraction of
correctly classified N and V heartbeats.

AC =
Correctly classified beats in both classes

Total number of beats
.

In Table 2 these scores are given as the mean value of 5 realisations corresponding to 5
random initialisations in the dictionary learning process. The standard deviations (std) are
shown in rows 4,6,8,10, and 14 of Table 2. The Matlab codes for implementing the approach
with the three greedy algorithms have been made available on [28].

Discussion of results

i) The high SE values for both classes, indicates that: 34.4% of the whole N beats in the data
set and 50% of the whole V beats in the data set provide enough examples in the training set
to learn dedicated dictionaries for each class.

ii) From Table 2 we can assert that each of the greedy algorithms performs better with a par-
ticular decision criterion.

iii) MP, combined with the decision Criterion III (norm-1), produces the highest statistics scores.
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MP OMP OOMP

Crit. I (a) I (b) II III I (a) I (b) II III I (a) I (b) II III

SPV (%) 99.7 99.7 99.7 99.7 99.1 99.1 99.3 99.4 98.8 98.8 98.5 97.4
std 0.05 0.05 0.04 0.03 0.09 0.09 0.01 0.04 0.14 0.13 0.16 0.45

SEV (%) 95.7 95.7 96.9 97.6 96.5 96.5 96.7 97.0 97.6 97.6 97.3 95.3
std 0.65 0.63 0.45 0.34 0.24 0.18 0.27 0.25 0.35 0.21 0.47 1.17

PPN (%) 99.7 99.7 99.8 99.9 99.8 99.8 99.8 99.8 99.9 99.9 99.8 99.7
std 0.04 0.04 0.03 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.03 0.07

PPV (%) 94.9 94.9 94.6 94.1 86.4 86.6 88.6 90.4 82.5 82.5 79.5 68.4
std 0.71 0.71 0.55 0.48 1.27 1.27 0.17 0.55 1.56 1.72 1.72 3.48

F1N (%) 99.8 99.8 99.8 99.8 99.4 99.4 96.4 97.0 99.3 99.3 99.1 98.5

F1V (%) 95.3 95.3 95.7 95.8 91.2 91.3 92.5 93.4 89.4 89.4 87.5 79.6

AC (%) 99.5 99.5 99.5 99.5 99.0 99.0 99.1 99.3 98.7 98.7 98.5 97.3
std 0.03 0.03 0.02 0.03 0.01 0.01 0.02 0.05 0.12 0.13 0.12 0.38

Table 2: Average statistics scores (of 5 different initialisations in the dictionary learning pro-
cedure) for classes N and V, obtained with MP, OMP, and OOMP, and the sparsity criteria
discussed in Sec. 2.2. std indicates the corresponding standard deviations.

iv) Being the OOMP approach stepwise optimal, in the sense of selecting at each step the atom
which minimises the norm of the residual error, it is not surprising that OOMP secures the
least number of atoms for the approximation of beats in th learning process (c.f. Fig.6). It is
also not surprising it is the approach that works better with Criterion I. However, there is no
reason to expect that OOMP should render all the highest classification scores. This is because,
within this framework, what matters for the identification of a heartbeat is the relative sparsity
value with respect to the 2 dictionaries.

v) For most of the scores, the random initialisation of the learning process does not change the
results in any significant manner (low std values).

vi) The comparatively lower values of PPV reflex the enormous difference of the number of N
and V beats in the testing sets (57277 vs 3359 beats). Thus, even if the percentage of incorrectly
classified N beats is small, the classification being binary implies that the number of incorrectly
identified N beats count as false positive V. This causes the low PPV values in comparison to
the other statistics metrics and, consequently, also comparatively low values of F1V scores. The
next remark follows up this discussion.

Remark 5. We would like to highlight with an example the fact that, in binary classification,
the difference in the number of beats in each class plays a crucial part in the value of F1. We see
from Table 2 that, when the testing set comprises 57277 N beats and 3359 V beats, the highest
value of F1V is 95.8% and the highest value of F1N is 99.8%. Keeping the same V beats we
now reduce, from 30000 to 15000, the number N beats for training the N dictionary. In oder to
maintain the same proportion of training and testing N beats as before, we reduce the testing set
to have 28638 N beats. The number of testing V beats remains 3359. Now the best values of F1V

and F1N, which are achieved with MP and Criterion III, become 97.6% and 99.7%, respectively,
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while the values of SEV and SPV remains almost the same (97.3% and 99.8%, respectively).
This example also illustrates the fact that comparisons between statistical quantities produced by
different approaches are only relevant when comparing identical classes and identical splitting
of a data set.

In order to place our results in the context of previous works, in Table 3 we reproduce
other approaches scores for ventricular contraction detection. However, it should be taken into
account that even if all the approaches use the MIT-BIH Arrhythmia data set, [30] and [32]
only consider the records involving V beats. Whilst [30] considers 27 records [32] considers
22. Moreover, in this test we have included LBB and RBB beats in the N category, which
increments the number of N beats.

AC (%) SEV (%) SPV (%) F1V (%)
Wavelet statistics [29] 97.8 87.2 99.0 86.0
Six features and SVM (only 27 records) [30] 99.8 99.9 99.4 —
Recurrent Unit Network [31] 97.9 98.0 97.8 —
2D Transfer Learning (only 22 records) [32] 99.9 99.9 99.5 99.8
Our scores with MP (all 44 records) 99.5 97.6 99.7 95.8

Table 3: The first row are the scores arising from statistics on wavelet coefficients, as reported
in [29]. The second row are the results, from 27 records, using six features and Support
Vector Machine (SVM) classifier [30]. The 3rd row are results produced by a Recurrent Unit
Network [31] and the next row by 2D Transfer Learning from 22 records [32]. The last row
shows our results from all 44 records with MP.

3.2 Test II

We test now the proposal in a more challenging situation. Because the morphology of N and V

beats depends on the particular ECG signal, a realistic test is carried out by taking the training
set and testing set from different records (corresponding to different patients).

Following a classic paper [22], the MIT-BIH Arrhythmia data set is divided for training
(DS1) and testing (DS2) as below.

The training set DS1 is taken only from the records:
101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215,
220, 223, 230.

The remaining records provide the testing set DS2. These are the records
100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231,
232, 233, 234.

The same sets for training and testing are used in [33] and [34] for ventricular contraction
detection. Since in those papers the LBB and RBB beats are not included, for the sake of
comparison in this numerical test we only use the beats originally labelled as N beats. For
learning the N dictionary we take randomly 15,000 N beats from the set DS1 and for learning
the V dictionary the 3578 V beats in that set. All the N and V beats in DS2 are used for testing
the approach. The resulting statistics scores are shown in Table 4.
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MP OMP OOMP

Crit. I (a) I (b) II III I (a) I (b) II III I (a) I (b) II III

SPV (%) 96.6 96.6 96.9 97.8 91.2 91.7 92.8 96.4 94.0 94.3 92.8 92.2
SEV (%) 86.5 86.6 90.0 92.4 91.4 91.0 91.5 90.0 93.8 94.3 92.8 92.2
PPV (%) 69.0 69.2 71.7 75.6 47.7 49.2 52.9 69.0 57.8 59.4 45.6 36.7
F1V (%) 76.7 76.9 79.8 83.2 62.7 63.8 67.0 78.1 71.5 72.8 61.2 52.5

AC (%) 95.7 95.8 96.3 97.0 91.2 95.3 95.9 97.7 93.9 94.3 90.4 86.4

Table 4: Statistics scores for V heartbeat characterisation, obtained with MP, OMP, and OOMP,
for the numerical Test II, in which training and testing sets correspond to different records.

Discussion of results

i) As expected, the classifications scores are lower than in Test I. This is because not all the
shapes of the beats in the testing set bears similarity with shapes present in the training set.

ii) Also in this test each of the greedy algorithms performs better with a particular decision
criterion.

iii) The greedy algorithm OOMP is the only one that performs better with Criterion I.

iv) Clearly MP works best with Criterion III and for most scores OMP as well.

v) The low values of PPV have the same cause as in Test I. Here the values are even lower
because the percentage of incorrectly classified N beats is higher than in Test I. Consequently,
the values of F1V are also smaller.

With the aim of placing our statistics scores into context, we reproduce in Table 5 the results
in [33] and [34]. Table 6 shows the number of N and V beats reported in those publication.
While the splitting of the records is identical, the beats in [34] are less than in [33] and in this
work.

AC (%) SEV (%) SPV (%) F1V (%)
Geometric features and AIS [33] 98.4 91.1 98.7 88.3
Geometric features (average of 8 classifier) [33] 97.2 78.9 98.9 82.6
Deep Metric Learning and KNN [34] 99.7 97.4 99.9 97.8
Our scores with MP 97.0 92.4 97.8 83.2

Table 5: Statistics scores corresponding to the DS2 testing set. The first and second rows
are the values arising from geometric features and Artificial Immune System (AIS) classifier
and average of 8 classifiers, as reported in [33]. The next row shows the scores produced from
automatic feature extraction and K-Nearest Neighbours (KNN) classifier, as reported in [34].
The last row are our scores obtained with MP.
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Number of N beats Number of V beats
Training set [33] 38,087 3683
Testing set [33] 36,428 3219
Training set [34] 35,640 2851
Testing set [34] 33,868 2548
Training set (this work) 38,086 3578
Testing set (this work) 36,427 3218

Table 6: Number of beats in the DS1 and DS2 sets used in [33], [34], and this work.

4 Conclusions

A set up for binary morphological characterisation of heartbeats on the basis of sparsity metrics
and labelled dictionaries has been laid out. The proposal was tested for identification of N and V

beats in the MIT-BIH Arrhythmia data set, achieving high scores in true positive identification
of the beats in the each class. Due to the huge difference in the number of N and V beats the
F1V score is comparatively lower.

The results are encouraging because the proposed binary identification is realised outside
the usual machine leaning framework, using sparsity as a single parameter for characterising
the morphology of a beat. This parameter can be used in combination with other features to
feed typical machine learning classifiers. It is in this context in which the approach should be
appreciated, because a morphological feature in isolation does not provide complete information
for classification of different types of heartbeats. The main limitation of the approach is the
computational complexity of the approximation process. However, since the approximation is
carried out beat by beat, there is scope for straightforward parallelisation of the step.

The possibility of implementing the technique depends on the availability of ‘enough’ exam-
ples to learn the corresponding dictionaries. In the numerical tests realised here, for instance,
3359 examples for beats V were enough to learn the dictionary Dv ∈ R256×512. The suscepti-
bility of the score F1V to false negative N outcomes indicates that, in binary classification, the
proportion between the two classes should be considered in order to assess the suitability of the
approach.
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