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Abstract

Sparse representation of 3D images is considered within the context of data reduction.
The goal is to produce high quality approximations of 3D images using fewer elementary
components than the number of intensity points in the 3D array. This is achieved by
means of a highly redundant dictionary and a dedicated pursuit strategy especially de-
signed for low memory requirements. The benefit of the proposed framework is illustrated
in the first instance by demonstrating the gain in dimensionality reduction obtained when
approximating true color images as very thin 3D arrays, instead of performing an inde-
pendent channel by channel approximation. The full power of the approach is further
exemplified by producing high quality approximations of hyper-spectral images with a
reduction of up to 371 times the number of data points in the representation.

Keywords: Image representation with Dictionaries; Greedy Pursuit Algorithms.

1 Introduction

Sparse representation of 2D images has been a subject of extensive research in the last fifteen

years [1–3]. Applications which benefit from sparsity range from image restoration [4, 5] and

classification [6–8] to feature extraction [9, 10] and super resolution reconstructions [11, 12].
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While sparse representation of 3D arrays has received less attention, the advantage of mod-

eling these arrays as a superposition of 3D elementary components is recognized in previous

publications [13–16].

At present, the most widely used multichannel images in every day life are true color im-

ages. The simplest way of sparsely representing these images is channel by channel, or adding

constraints of correlation across colors [4,17]. However, as demonstrated in this work, sparsity

in the representation of true color images can increase substantially if the approximation is

realized by means of 3D elements taken from a highly redundant dictionary. The effect is of

course more pronounced for arrays involving more channels, such as hyper-spectral images.

From a practical view point, the current drawbacks of 3D sparse modeling using a large

dictionary are (i) storage requirements and (ii) the complexity of the concomitant calculations.

In this paper we propose a method which, by addressing (i) leaves room for possible high

performance implementations using Graphics Processing Unit (GPU) programming. While

the approach is illustrated using Central Processing Unit (CPU) programming, the storage

requirements are shown to fit within 48Kb’s of fast access shared memory of a GPU when the

approximation of a 3D image is realized with a partition block size of 8 × 8 × 8 and with a

separable dictionary of redundancy 125.

The main contributions of the paper are listed below.

• The low memory implementation of the Orthogonal Matching Pursuit (OMP) strategy,

called Self Projected Matching Pursuit (SPMP) [18] is dedicated to operating in 3D

(SPMP3D) with separable dictionaries. This technique delivers an iterative solution to

the 3D least squares problem which requires much less storage than direct linear algebra

methods. It could therefore be also applied with any other of the pursuit strategies that

include a least squares step [14,19–22].

• The C++ MEX file for the SPMP3D method has been made available on a dedicated

website [23]. All the scripts for reproducing the results of the paper in the MATLAB

environment have also been placed on that website.
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• Remarkable reduction in the dimensionality of the representation of true color images

and hyper-spectral images, with high quality reconstruction, is demonstrated using highly

redundant and highly coherent separable dictionaries.

The results suggest that the method may be of assistance to image processing applications

which rely on a transformation for data reduction as a first step of further processing. For

examples of relevant applications we refer to [24–28].

2 Notational Convention

R represents the set of real numbers. Boldface letters are used to indicate Euclidean vectors,

2D and 3D arrays. Standard mathematical fonts indicate components, e.g., d ∈ RN is a vector

of components d(i) ∈ R, i = 1, . . . , N . The elements of a 3D array I ∈ RNx×Ny×Nz are indicated

as I(i, j,m), i = 1, . . . , Nx, j = 1, . . . , Ny, m = 1, . . . , Nz. Moreover, for each m-value Im ∈

RNx×Ny stands for the 2D array of elements Im(i, j) = I(i, j,m), i = 1, . . . , Nx, j = 1, . . . , Ny,

which, when not leaving room for ambiguity will also be represented as I(:, :,m). The transpose

of a matrix, G say, is indicated as G>.

The inner product between 3D arrays, say I ∈ RNx×Ny×Nz and G ∈ RNx×Ny×Nz , is given as:

〈G, I〉3D =
Nx∑
i=1

Ny∑
j=1

Nz∑
m=1

G(i, j,m)I(i, j,m).

For G ∈ RNx×Ny×Nz with tensor product structure, i.e. for G = gx ⊗ gy ⊗ gz, with gx ∈

RNx ,gy ∈ RNy and gz ∈ RNz , we further have

〈G, I〉3D =
Nz∑
m=1

〈gx, Img
y〉gz(m) = 〈p,gz〉, (1)

where for each value of m the vector Img
y in RNx arises by the standard matrix-vector multi-

plication rule and p ∈ RNz is given by its components p(m) = 〈gx, Img
y〉, m = 1, . . . , Nz. Note

that 〈p,gz〉 indicates the Euclidean inner product in 1D, i.e.

〈p,gz〉 =
Nz∑
m=1

p(m)gz(m).
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The definition (1) induces the norm ‖I‖3D =
√
〈I, I〉3D.

3 Sparse Representation of Multi-channel Images

Suppose that a 3D image, given as an array I ∈ RNx×Ny×Nz of intensity pixels, is to be approx-

imated by the linear decomposition

Ik =
k∑

n=1

c(n)D`n , (2)

where each c(n) is a scalar and each D`n is an element of RNx×Ny×Nz to be selected from a set,

D = {Dn}Mn=1, called a ‘dictionary’.

A sparse approximation of I ∈ RNx×Ny×Nz is an approximation of the form (2) such that

the number k of elements in the decomposition is significantly smaller than N = NxNyNz. The

terms in the decomposition (2) are taken from a large redundant dictionary, from where the

elements D`n in (2), called ‘atoms’, are chosen according to an optimality criterion.

Within the redundant dictionary framework for approximation, the problem of finding the

sparsest decomposition of a given multi-channel image can be formulated as follows: Given an

image and a dictionary, approximate the image by the ‘atomic decomposition’ (2) such that the

number k of atoms is minimum. Unfortunately, the numerical minimization of the number of

terms to produce an approximation up to a desired error, involves a combinatorial problem for

exhaustive search. Hence, the solution is intractable. Consequently, instead of looking for the

sparsest solution, one looks for a ‘satisfactory solution’, i.e., a solution such that the number

of k-terms in (2) is considerably smaller than the image dimension. For 2D images this can be

effectively achieved by greedy pursuit strategies in the line of the Matching Pursuit (MP) [29]

and OMP [30] methods, if dedicated to 2D separable dictionaries [14,18,32,33]. Within a tensor

product framework the consideration of OMP in 3D is natural.

Let’s assume that a 3D dictionary is obtained as the tensor product D = Dx ⊗Dy ⊗Dz of

three 1D dictionaries Dx = {dx
m ∈ RNx}Mx

m=1, Dy = {dy
m ∈ RNy}My

m=1, and Dz = {dz
m ∈ RNz}Mz

m=1,

with MxMyMz = M . For computational purposes the 1D dictionaries are stored as three
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matrices Dx ∈ RNx×Mx , Dy ∈ RNy×My and Dz ∈ RNz×Mz . Suppose now that a 3D array

I ∈ RNx×Ny×Nz is to be approximated by an atomic decomposition of the form

Ik =
k∑

n=1

c(n)dx
`xn
⊗ dy

`yn
⊗ dz

`zn
, (3)

where for n = 1, . . . , k the atoms dx
`xn

, dy
`yn

and dz
`zn

are selected from the given 1D dictionaries.

The common step of the techniques we consider for constructing approximations of the form

(3) is the stepwise selection of the atoms in the atomic decomposition. On setting k = 1 and

I0 = 0 at iteration k the algorithm selects the indices `xk, `yk and `zk as follows

`xk, `
y
k, `

z
k = arg max

n=1,...,Mx
i=1,...,My

s=1,...,Mz

∣∣〈dx
n ⊗ dy

i ⊗ dz
s,R

k−1〉3D
∣∣ , (4)

with Rk−1 = I− Ik−1. It is the determination of the coefficients c(n), n = 1, . . . , k in (3) that

gives rise to pursuit strategies which go with different names.

3.1 Matching Pursuit in 3D (MP3D)

The MP approach in 3D would simply calculate the coefficients in (3) as

c(n) = 〈dx
`xn
⊗ dy

`yn
⊗ dz

`zn
,Rn−1〉3D, n = 1, . . . , k. (5)

The main drawback of the MP method is that it may select linearly dependent atoms. Moreover,

that approximation is not stepwise optimal because at iteration k the coefficients (5) do not

minimize the norm of the residual error. The pursuit strategy that overcomes these limitations

is the so called OMP [30].

3.2 Orthogonal Matching Pursuit in 3D

The implementation of OMP in 3D (OMP3D) we describe here is the 3D extension of the

implementation of OMP in 2D given in [32]. An alternative algorithm called Kronecker-OMP,

which is based on the Tucker representation of a tensor, is discussed in [14]. Our algorithm
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is based on adaptive biorthogonalization and Gram-Schmidt orthogonalization procedures, as

proposed in [31] for the one dimensional case.

In order to ensure the coefficients c(n), n = 1, . . . , k involved in (3) are such that ‖Rk‖23D =

〈Rk,Rk〉3D is minimum, the decomposition (3) should fulfill that

Ik =
k∑

n=1

c(n)dx
`xn
⊗ dy

`yn
⊗ dz

`zn
= P̂Vk

I, (6)

where P̂Vk
is the orthogonal projection operator onto Vk = span{dx

`xn
⊗ dy

`yn
⊗ dz

`zn
}kn=1. This is

ensured by requiring that Rk = I − P̂Vk
I, where P̂Vk

is the orthogonal projection operator

onto Vk = span{dx
`xn
⊗ dy

`yn
⊗ dz

`zn
}kn=1. The required representation of P̂Vk

is of the form

P̂Vk
I =

∑k
n=1An〈Bk

n, I〉3D, where each An ∈ RNx×Ny×Nz is an array with the selected atoms

An = dx
`xn
⊗dy

`yn
⊗dx

`zn
. The concomitant biorthogonal reciprocal set Bk

n, n = 1, . . . , k comprises

the unique elements of RNx×Ny×Nz satisfying the conditions:

i) 〈An,B
k
m〉3D = δn,m =

{
1 ifn = m

0 ifn 6= m.

ii) Vk = span{Bk
n}kn=1.

Thus, the coefficients c(n), n = 1, . . . , N in (6) which guarantee minimum norm of the residual

error are calculated as

c(n) = 〈Bk
n, I〉3D, n = 1, . . . , k.

The required arrays Bk
n, n = 1, . . . , k should be upgraded and updated to account for each

newly selected atom. Starting from k = 1,R0 = I, B1
1 = W1 = A1 = dx

`x1
⊗ dy

`y1
⊗ dz

`z1
, where

`x1 , `
y
1, `

z
1 = arg max

n=1,...,Mx
i=1,...,My

s=1,...,Mz

∣∣〈dx
n ⊗ dy

i ⊗ dz
s,R

k−1〉3D
∣∣ ,

at iteration k + 1 the indices `xk+1, `
y
k+1, `

z
k+1 corresponding to the new atom Ak+1 = dx

`xk+1
⊗

dy
`yk+1
⊗dz

`zk+1
are selected as in (4). The required reciprocal set Bk+1

n , n = 1, . . . , k+1 is adapted
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and upgraded by extending the recursion formula given in [31] as follows.

Bk+1
n = Bk

n −Bk+1
k+1〈Ak+1,B

k
n〉3D, n = 1, . . . , k,

where

Bk+1
k+1 = Wk+1/‖Wk+1‖23D,

with

Wk+1 = Ak+1 −
k∑

n=1

Wn

‖Wn‖23D
〈Wn,Ak+1〉3D,

including, for numerical accuracy, the re-orthogonalization step:

Wk+1 ←Wk+1 −
k∑

n=1

Wn

‖Wn‖23D
〈Wn,Wk+1〉3D.

Although the image approximation is carried out by partitioning the images into relatively

small 3D blocks, memory requirements of the OMP3D method are high. Indeed, the above are

2(k+1) nonseparable arrays each of dimension N = NxNyNz which need to be stored in double

precision. Hence, we consider next a low memory implementation of the orthogonal projection

step, which avoids having to store the arrays Wn, n = 1, . . . , k and Bk
n, n = 1, . . . , k and fully

exploits the separability of the dictionary.

3.3 Self Projected Matching Pursuit in 3D (SPMP3D)

The Self Projected Matching Pursuit (SPMP) methodology was introduced in [18] and con-

ceived to be used with separable dictionaries in 2D (SPMP2D). Because the technique is based

on calculations of inner products, it can be easily extended to operate in 3D (SPMP3D).

Suppose that at iteration k the selection process has chosen the atoms labeled by the triple

of indices {`xn, `yn, `zn}kn=1 and let Ĩk be the atomic decomposition

Ĩk =
k∑

n=1

a(n)dx
`xn
⊗ dy

`yn
B ⊗ dz

`zn
, (7)

where the coefficients a(n), n = 1, . . . , k are arbitrary numbers. Every array I ∈ RNx×Ny×Nz

can be expressed as

I = Ĩk + R̃. (8)
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For Ĩk to be the optimal representation of I in Vk = span{dx
`xn
⊗ dy

`yn
⊗ dz

`zn
}kn=1, in the sense

of minimizing the norm of the residual R̃, it should be true that P̂Vk
R̃ = 0. The SPMP3D

method fulfills this property by approximating R̃ in Vk, via the MP method, and subtracting

that component from R̃. The following algorithm describes the whole procedure. Starting from

k = 0 and R0 = I, at each iteration, implement the steps below.

i) Increase k ← k+1 and apply the criterion (4) for selecting the triple of indices (`xk, `
y
k, `

z
k).

Save this triple in the array L(k, 1 : 3) = (`xk, `
y
k, `

z
k), and set

c(k) = 〈dx
`xk
⊗ dy

`yk
⊗ dz

`zk
,Rk−1〉3D

and implement the update of the residue Rk = Rk−1 − c(k)dx
`xk
⊗ dy

`yk
⊗ dz

`zk
as follows:

For s = 1, . . . Nz calculate

∆Rk(:, :, s) = Rk−1(:, :, s)− c(k)dx
`xk

(dy
`yk

)>dz`zk(s),

to update Rk as

Rk = Rk−1 −∆Rk.

ii) Given the indices L(n, 1 : 3) = (`xn, `
y
n, `

z
n), n = 1, . . . , k of the previously selected atoms,

and a tolerance ε for the projection error, realize the orthogonal projection up to that

error as follows. Set j = 1, R̃0 = Rk and at iteration j apply the steps a) - c) below.

a) For n = 1, . . . , k evaluate

α(n) = 〈dx
`xn
⊗ dy

`yn
⊗ dz

`zn
, R̃j−1〉3D, (9)

and single out the value k∗ such that

k∗ =arg max
n=1,...,k

|α(n)|. (10)

The value k∗ signalizes the indices `xk∗ , `
y
k∗ , `

z
k∗ corresponding to the already selected

atoms with maximum correlation with the residual R̃j−1.
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b) If |α(k∗)| < ε stop. Otherwise update the coefficient

c(k∗)← c(k∗) + α(k∗)

and for s = 1, . . . , Nz evaluate

∆R̃j(:, :, s) = α(k∗)dx
`x
k∗

(dy
`y
k∗

)>dz`z
k∗

(s)

to update the residual R̃j as

R̃j = R̃j−1 −∆R̃j.

This step subtracts from the residual a component in Vk and add that component

to the approximation Ĩk

c) Increase j ← j+1 and repeat the steps a) - c) to keep subtracting components of R̃j

in Vk until iteration, J say, for which the stopping criterion b) is met. This criterion

indicates that, up to tolerance ε, the residual has no component in Vk so that one

can set Rk = R̃J−1.

Continue with steps i) and ii) to keep enlarging Vk until, for a required tolerance error ρ,

the condition ‖Rk‖3D < ρ is reached.

Remark 1: For each fixed value k the rate of convergence

lim
j→∞

I− R̃j = P̂Vk
I

through the steps a) - c) above is given in [34] for the one dimensional case. The proof for 3D

is identical to that proof, because a 3D array can be represented as a long 1D vector. What

varies is the implementation. A vectorized version of the algorithm would not be applicable in

this context.
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Implementation details

The bulk of the computational burden in the SPMP3D method lies in the realization of the

selection of atoms (4). Algorithm 1 outlines a procedure implementing the process. It should

be stressed once again that the algorithm is designed to use as little memory as possible, rather

than to reduce complexity. At iteration k the outputs of Algorithm 1 are saved as c(k) = α

Algorithm 1 Implementation of the selection of atoms (c.f. (4))
Procedure [α, `x, `y, `z] = Sel3DAtom(R,Dx,Dy,Dz)

Input: 3D array R, matrices Dx, Dy Dz the columns of which are the atoms in the corre-
sponding dictionaries.
Output: selected indices `x, `y, `z, and α = 〈dx

`x ⊗ dy
`y ⊗ dz

`z ,R〉3D
{Initiate the algorithm}
(Nz,Mz) = size(Dz) ,Mx = size(Dx, 2); My = size(Dy, 2)
q = zeros(Mx,My)
α = 0
for m = 1 : Mz do
q(:, :) = 0
for s = 1 : Nz do
q(:, :) = q(:, :) + D>xR(:, :, s)Dyd

z
m(s)

end for
{Realize (4) by finding the partial maximum, and its argument, for each m-plane}
[l1, l2, q̃] = max(|q(:, :)|)
if q̃ > α then
α = q̃; `x = l1; `

y = l2; `
z = m

end if
end for

and L(k, 1 : 3) = (`x, `y, `z). The implementation details for selecting the triple of indices at

the projection step are given in Algorithm 2. This is used in Algorithm 3 for the realization of

the actual projection to recalculate the coefficients in the atomic decomposition.

Due to computational complexity and memory requirements, pursuit strategies using general

dictionaries can only be implemented on an image partitioned into small blocks. We consider

nonoverappling blocks. The approximation of each block is carried out independently of the

others. When the approximation of all the blocks is concluded, these are assembled together

to produce the approximation of the whole image. While the sparsity results yielded by the
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Algorithm 2 Selection of the triple of indices from the reduced dictionary (c.f. (10))
Procedure [α∗, k∗]=SelTrip(R,Dx,Dy,Dz,L)

Input: As in Algorithm 1 plus the array L, with the triple of indices L(n, 1 : 3) =
(`xn, `

y
n, `

z
n), n = 1 . . . k

Output: k∗ and the corresponding values of α (c.f. (10)) to update the coefficients and
residual
{Initiate the algorithm}
α∗ = 0
for n = 1 : k do
p = 0
for s = 1 : Nz do
p = p+ (dx

`xn
)>R(:, :, s)dy

`yn
dz`zn(s)

end for
if |p| > |α∗| then
k∗ = n and α∗ = p

end if
end for

OMP3D and the SPMP3D methods are theoretically equivalent, we have seen that the latter

implementation is much more economic in terms of storage demands. As discussed in Remark

2 below, this feature makes the SPMP3D algorithm suitable for possible GPU implementations

using only the fast access shared memory. Assuming for simplicity in the notation that a 3D

image is partitioned into cubes of size N3
b and the dictionaries Dx, Dy and Dz are all of the same

size Nb × rNb, where r > 1 is the redundancy of the 1D dictionary, the SPMP3D algorithm

storage needs are as follows.

1. Two N3
b arrays for the intensity block in the image partition and the residual of the

corresponding approximation.

2. Three matrices of size Nb × rNb for each dictionary, in case they are different.

3. A r2 ×N2
b array for the selection of indices in Algorithm 1.

4. A vector of k real numbers to store the coefficients of the atomic decomposition and k

vectors of size 3 to store the indices of the atoms in the atomic decomposition. The value

of k is the total number of atoms in the approximation of the block.
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Algorithm 3 Implementation of the self projection steps a) - c).
Procedure [R̃, c̄]=Proj3D(R,Dx,Dy,Dz,L, c, ε,MaxJ).

Input: As in Algorithm 2, plus the coefficients of the atomic decomposition c, a tolerance
parameter ε for the numerical error of the projection, and a maximum number of permitted
iterations, MaxJ.
Output: Orthogonal residual R̃. Coefficients c̃ of the optimized atomic decomposition.
for j = 1 : MaxJ do
{Selection of atoms using Algorithm 2}
[α∗, k∗]=SelTrip(R,Dx,Dy,Dz,L)
{Check stopping criterion}
if |α∗| < ε then

stop
end if
{Update the coefficients}
c(k∗)← c(k∗) + α∗

{Update the residual}
for s = 1 : Nz do
R(:, :, s)← R(:, :, s)− α∗(dx

`x
k∗

)>R(:, :, s)dy
`y
k∗
dz`z

k∗
(s)

end for
end for
{For clarity in the description only, we re-name here the residual and coefficients}
R̄ = R; c̄ = c

Since the stepwise complexity is dominated by the selection of indices (c.f. (4)), within this

setup it is O(r3N5
b ) and for true color images O(r3N3

b ).

Remark 2: By considering blocks of size 8 × 8 × 8 and dictionaries of redundancy r = 5

in each dimension, the above listed storage needs of the SPMP3D algorithm comfortably fit

the fast access shared memory of a GPU in CUDA, which currently is 48Kb. Indeed, in the

worst-case scenario (corresponding to an approximation of zero error using k = 83 atoms for the

approximation of an 8× 8× 8 block) SPMP3D would require 38Kb to store most of the arrays

in double precision, except for those with the selected indices which contain integer numbers.

This still leaves 10Kb for temporary variables to be used within calculations.
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3.4 Mixed Dictionaries

A key factor for the success in the construction of sparse representations is to have a good

dictionary. While a number of techniques for learning dictionaries from training data have

been proposed in the literature [35–42], they are not designed for learning large and highly

coherent separable dictionaries. Nevertheless, previous works [18,32,33,43] have demonstrated

that highly redundant and highly coherent separable dictionaries, which are easy to construct,

achieve remarkable levels of sparsity in the representation of 2D images. Such dictionaries are

not specific to a particular class of images. A discrimination is only made to take into account

whether the approximation is carried out in the pixel intensity or in the wavelet domain.

As will be illustrated by the numerical examples in the next section, the approximation

of the images we are considering are sparser when realized in the wavelet domain (wd). This

entails the following steps:

• Apply a wavelet transform to each channel Im,m = 1, . . . , Nz to obtain the arrays

Um,m = 1, . . . , Nz. For the numerical examples we have used the 9/7 Cohen-Daubechies-

Feauveau biorthogonal wavelet transform [44].

• Approximate the array U ∈ RNx×Ny×Nz exactly as it is done in the pixel domain (pd).

• Apply the inverse wavelet transform to the approximated planes to recover the approxi-

mated intensity channels.

The mixed dictionary we consider for the 2D approximation consists of two sub-dictionaries:

A trigonometric dictionary, Dx
T , which is the common sub-dictionary for the approximation in

both domains, and a dictionary of localized atoms, which contains atoms of different shapes

when used in each domain.

The trigonometric dictionary is the union of the dictionaries Dx
C and Dx

S defined below:

Dx
C ={wc(n) cos

π(2i− 1)(n− 1)

2Mx

, i = 1, . . . , Nx}Mx
n=1

Dx
S ={ws(n) sin

π(2i− 1)(n)

2Mx

, i = 1, . . . , Nx}Mx
n=1,
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where wc(n) and ws(n), n = 1, . . . ,Mx are normalization factors, and usually Mx = 2Nx. Thus,

the trigonometric dictionary is constructed as Dx
T = Dx

C ∪ Dx
S.

For approximations in the pd we add the dictionary, Dx
Lp, which is built by translation of

the prototype atoms in the left graph of Fig. 1. This type of dictionary is inspired by a general

result holding for continuous spline spaces. Namely, that spline spaces on a compact interval

can be spanned by dictionaries of B-splines of broader support than the corresponding B-spline

basis functions [45, 46]. Thus, the first 4 prototype atoms hi, i = 1, . . . , 4 in the left graph

of Fig. 1 are generated by discretization of linear B-spline functions of different support. For

m = 1, 2, 3, 4 those functions are defined as follows:

hm(x) =


x
m

if 0 ≤ x < m

2− x
m

if m ≤ x < 2m

0 otherwise.

(11)

The remaining prototypes, h5,h6 and h7, in the left graph of Fig. 1 are generated taken the

derivatives of the previous functions: h5(x) = (h2(x))′, h6(x) = (h3(x))′ and h7 = (h4(x))′. The

corresponding dictionaries DHm , m = 1, . . . , 7 are built by discretization of the variable x in

(11) and sequential translation of one sampling point, i.e.,

DHm = {whm(n)hm(i− n)|Nx; i = 1, . . . , Nx}Mn=1, m = 1, . . . , 7,

where the notation hm(i−n)|Nx indicates the restriction to be an array of size Nx. The numbers

whm(n), n = 1, . . . ,M, m = 1, . . . , 7 are normalization factors. The dictionary Dx
Lp arises by the

union of the dictionaries DHm , m = 1, . . . , 7 i.e., Dx
Lp = ∪7m=1DHm . The whole mixed dictionary

Dx
pd is finally formed as Dx

pd = Dx
C ∪ Dx

S ∪ Dx
Lp. For the other dimension we take Dy

pd = Dx
pd.

For approximations in the wd we use the dictionary of localized atoms Dx
Lw as proposed

in [33], which is built by translation of the prototype atoms pi, i = 1, . . . , 7 in the right graph

of Fig. 1. Notice that p1 = h1 and p3 = h5. The remaining prototypes are given by the vectors:

p2 = (1, 1, 0, 0, . . . , 0)⊥ ∈ RNx ,p4 = (1, 1, 1, 0, . . . , 0)⊥ ∈ RNx ,p5 = (−1, 1, 1, 0, . . . , 0)⊥ ∈ RNx ,

p6 = (1,−1, 1, 0, . . . , 0)⊥ ∈ RNx ,p7 = (−1,−1, 1, 0, . . . , 0)⊥ ∈ RNx ,
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Figure 1: The left graph illustrates the prototype atoms which generate by translation the dictio-

naries DHm , m = 1, . . . , 7. The prototypes in the right graph generate by translation the dictionaries

DPm , m = 1, . . . , 7.

The corresponding dictionaries DPm , m = 1, . . . , 7 are built as in the previous case by sequential

translation of one sampling point,

DPm = {wpm(n)pm(i− n)|Nx; i = 1, . . . , Nx}Mn=1, m = 1, . . . , 7,

where the numbers wpm(n), n = 1, . . . ,M, m = 1, . . . , 7 are normalization factors. The dictio-

naries DPm ,m = 1, . . . , 7 give rise to Dx
Lw = ∪7i=1DPm . The latter generates the mixed dictionary

Dx
wd = Dx

C ∪ Dx
S ∪ Dx

Lw and Dy
wd = Dx

wd.

The corresponding 2D dictionaries Dpd = Dx
pd ⊗D

y
pd and Dwd = Dx

wd ⊗D
y
wd are very large,

but never used as such. All the calculations are carried out using the 1D dictionaries. In order

to demonstrate the gain in sparsity attained by the approximation of 3D images by partitioning

into 3D blocks, we use dictionaries Dwd and Dpd only for the approximation of the single channel

2D images. For the 3D case we maintain the redundancy of the 3D dictionary equivalent to

that of the 2D dictionary, by considering the 1D dictionary D̃x
pd = Dx

C ∪Dx
S ∪DP1 . Notice that

DP1 is the standard Euclidean basis for RNx , also called the Dirac’s basis, i.e., the basis arising

by translation of the first atom in Fig. 1. Notice that D̃x
pd ⊂ Dx

pd and D̃x
pd ⊂ Dx

wd. We also

consider D̃y
pd = D̃x

pd and D̃z
pd = D̃x

pd, but taking Nx = Nz. The redundancy of the resulting

15



dictionary D̃pd = D̃x
pd ⊗ D̃

y
pd ⊗ D̃z

pd is equivalent to the redundancy of the 2D dictionary Dpd.

In 3D we use the same dictionary in both domains D̃wd = D̃pd.

4 Numerical Results

The merit of the simultaneous approximation of multiple channel images is illustrated in this

section by recourse to two numerical examples. Firstly we make the comparison between the

sparsity produced by the joint approximation of the Red-Green-Blue (RGB) channel images

partitioned into blocks of size Nb × Nb × 3 and the sparsity obtained by the independent

approximation of each channel partitioned into blocks of size Nb×Nb. Secondly, the full power

of the approach is illustrated through the gain in sparsity attained by approximating hyper-

spectral images partitioned into 3D blocks, vs the plane by plane approximation.

In both cases, once the approximation of each 3D block Iq in the image partition is com-

pleted, for q = 1, . . . , Q the kq-term atomic decomposition of the corresponding block is ex-

pressed in the form

Ikqq =

kq∑
n=1

cq(n)dx
`x,qn
⊗ dy

`y,qn
⊗ dz

`z,qn
. (12)

The sparsity of the representation of an image of dimension N = Nx · Ny · Nz is measured by

the Sparsity Ratio (SR), which is defined as:

SR =
N

K
, (13)

where for the 3D representation K =
∑Q

q=1 kq, with kq the number of atoms in the atomic

decomposition (12). For the channel by channel decomposition of a Nz-channel image, each

channel is partitioned into P = (Nx ·Ny)/N
2
b blocks Ip,z, p = 1, . . . , P , which are approximated

by the 2D atomic decompositions

I
kp,l
p =

kp,l∑
n=1

cp,lp (n)dx

`x,p,ln
⊗ dy

`y,p,ln
, l = 1, . . . , Nz, (14)

where the indices `x,p,ln , `y,p,ln are selected for each channel l by the OMP2D algorithm. Accord-

ingly, the number K in (13) is given as K =
∑Nz

l=1

∑P
p=1 kp,l, with kp,l the number of atoms in
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the atomic decomposition (14).

Notice that the SR is a measure of the reduction of dimensionality for representing an image.

The larger the value of the SR the smaller the dimensionality of the atomic decomposition

representing the whole image. The required quality of the approximation is ensured with respect

to the Mean Structural SIMilarity (MSSIM) index [47,48] and the classical Peak Signal-to-Noise

Ratio (PSNR), which for a 3D image is defined as

PSNR = 10 log10

(
(Imax)2

MSE

)
, MSE =

‖I− IK‖3D
Nx ·Ny ·Nz

,

where Imax is the maximum intensity range and IK the image approximation.

4.1 Example I

In this example we use the Kodak data set consisting of 24 true color images shown in Fig. 2.

Figure 2: Illustration of the Kodak data set consisting of 24 true color images, credit Rich Franzen [49].

The size of these images is 768 × 512 × 3, for most of them, except for numbers 4, 9, 10, 17, 18 and

19, which are of size 512× 768× 3.

17



The approximations are realized in both domains by maintaining the same redundancy

in the 2D and 3D dictionaries. For the independent approximation of the 2D channels the

partitions are realized with blocks of size 8 × 8 and 16 × 16 (a partition of block size 24 × 24

does not improve results for this data set). Accordingly, the simultaneous approximation of the

3 color channels involves partitions of block size 8× 8× 3 and 16× 16× 3 respectively.

As already discussed, for the independent approximation of the 2D channels we consider

the dictionaries Dpd (in the pd) and Dwd (in the wd) as given in Sec. 3.4. For the simultaneous

approximation of the 3 channels we consider the dictionaries D̃pd given in the same section.

Both dictionaries have redundancy of 125.

The average values of SR (SR), with respect to the 24 images in the set, are given in Table

1 for the approaches and partitions indicated by the first column.

PSNR 45 dB 41 dB

SR std SR std

pd 2D 8× 8 6.2 2.0 9.1 3.5
pd 3D 8× 8× 3 10.3 2.9 16.1 5.5
wd 2D 8× 8 7.1 2.6 11.8 5.8
wd 3D 8× 8× 3 11.6 3.8 20.9 9.2

pd 2D 16× 16 7.1 2.5 11.1 5.0
pd 3D 16× 16× 3 11.6 3.6 18.8 7.5
wd 2D 16× 16 7.5 2.7 12.0 6.2
wd 3D 16× 16× 3 12.4 3.9 20.4 8.9
Thresholding in the wd 3.2 1.1 4.9 2.6

Table 1: Mean value of the SR, with respect to the 24 images in the set, obtained with the 2D and

3D approximations in both the pd and wd for two different sizes of the image partition. The last row

in the table gives the results corresponding to standard nonlinear thresholding of wavelet coefficients,

to achieve the same quality of the approximation as with the dictionaries: PSNR = 45dB (left half)

and PSNR = 41dB (right half).

All the results in the left half of the table correspond to PSNR = 45 dB and all the

results in the right half correspond to PSNR = 41 dB. The third and fifth columns give

the standard deviations (std). For completeness we have also produced the SR rendered by
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nonlinear thresholding of the wavelets coefficients (last row in the table). Notice that the

resulting sparsity is poor in comparison with the other 2D results.

All the results were obtained in the MATLAB environment on a notebook 2.9GHz dual core

i7 3520M CPU and 4GB of memory. For the channel by channel approximation a C++ MEX

file implementing OMP2D was used. For the 3D approximation SPMP3D was implemented by

a C++ MEX file.

As observed in Table 1 the largest SR is achieved in the wd and partition 16× 16× 3 (c.f.

last but one row of Table 1). However, the results obtained by partition 8 × 8 × 3 are very

close (c.f. last row of the upper half of Table 1) and constitute a better tradeoff between SR

and approximation time.

Fig. 3 shows the actual values of SRs for this partition in the wd for each of the 24 images

in the data set (c.f. Fig. 2). The average time for the 3D approximation was 53 s per image.
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0

5

10

15

20

25

Image Number

S
R

 

 

wd3D8x8
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Figure 3: SR for the 45dB approximation, in the wd, of each of the 24 images in the Kodak data set (c.f.

Fig. 2 enumerated from top left to bottom right). The results for the independent approximation of

each 2D color channel are represented by the filled circles and those corresponding to the simultaneous

approximation of the 3 channels are represented by the filled squares. The corresponding partitions

are of size 8× 8 and 8× 8× 3.
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3D SR=63.5 PSNR=38.4 2D SR=63.5 PSNR=24.8

3D SR=63.5; PSNR=35.9 2D SR=63.5; PSNR=22.1

3D SR=63.5; PSNR=37.6 2D SR=63.5; PSNR=24.9

Figure 4: Approximations of Images 3, 7 and 12 in the Kodak data set, for SR=63.5. The images

on the left are the 3D approximations. The images on the right are the 2D channel by channel

approximations.
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Fig. 4 demonstrates the gain in visual quality obtained when the approximation of Images

3, 7 and 12 are realized simultaneously in 3D, instead of independently for each 2D channel. In

both cases the SR is fixed at a high value SR=63.5. While the 3D approximation is still of good

quality (c.f. images on the left in Fig. 4) the distortion of the channel by channel approximation

is very noticeable even at the scale of the figure (c.f. images on the right in Fig. 4).

As a final remark it is worth noting that the number kq of atoms in the approximation of

each block q of an image partition produces a meaningful summary of local sparsity.

Figure 5: The upper graphs are a representation of the piecewise sparsity corresponding to Image 22

in the Kodak data set. Both graphs are arrays of 64×96 points. Each point corresponds to the number

kq of atoms in the approximation of a block q. The left graph corresponds to the 2D approximation

and the right graph to the 3D approximation. The lower graph is the image given as 3 channels of

512× 768 pixels each.

The upper graphs of Fig. 5 are a representation of the piecewise sparsity corresponding

to Image 22 in the Kodak data set. Both graphs are arrays of 64 × 96 points. Each point

corresponds to the number kq of atoms in the approximation of a block q. The left graph
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corresponds to block size 8 × 8 in the 2D approximation, by taking the average kq over the

three channels in the block, which is roughly the kq-value corresponding to the equivalent block

in the gray scale image. The right graph corresponds to kq for each block of size 8 × 8 × 3 in

the 3D approximation. Both approximations are realized in the pd. The lower graph is the

image given as 3 channels of 512 × 768 pixels each. It follows from the figure that the points

corresponding to the 3D approximation give mode details about the image.

4.2 Example II

We consider now the approximation of the hyper-spectral images illustrated in Fig. 6. Details

on the images acquisition and processing are described in [52–54].

Figure 6: Illustration of the hyper-spectral images available on [55] and [56]. From top left to bottom

right in Table. 2 are labelled as Ribei., Graff., Rose, and Col. The of size of all four images is

1016× 1336× 32 pixels.

All four images are of size 1016 × 1336 × 32, and have been approximated in partitions of

block size Nb × Nb, with Nb = 8, 16, and 24 for the 2D approximation, and 8 × 8 × 8 for the
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3D approximation. For the 2D channel by channel approximation we use the dictionaries Dpd

and Dwd as defined in Sec. 3.4. For the 3D approximation we maintain the redundancy as in

2D using the dictionary D̃pd introduced Sec. 3.4 and D̃a
wd = D̃a

pd.

Because the range of intensity varies across the images, in order to compare SRs with

different approaches we fix the Signal to Noise Ratio (SNR)

SNR = 10 log10

(
‖I‖23D

‖I− IK‖23D

)
. (15)

Image Ribei. Graff. Rose Col.

SNR= 31 dB
PSNR 46.8 48.2 47.8 46.7
SR2DNb = 8 19.2 19.2 24.1 47.7
Time (min) 1.6 1.6 1.3 0.9
SR2DNb = 16 27.3 25.5 38.7 110.6
Time (min) 3.4 3.8 2.1 1.1
SR2DNb = 24 29.6 26.8 44.2 147.5
Time (min) 7.6 9.2 4.5 1.5
SR3DNb = 8 49.1 59.7 74.6 137.2
Time (min) 18 15 10 6

SNR= 33 dB
PSNR 48.8 50.2 49.8 48.7
SR2DNb = 8 15.2 15.4 19.3 41.5
Time (min) 2.3 2.1 1.7 1.1
SR2DNb = 16 20.4 19.5 29.1 86.4
Time (min) 5.4 5.6 2.9 1.2
SR2DNb = 24 21.9 20.5 32.7 106.3
Time (min) 12 14 6.8 1.9
SR3DNb = 8 33.5 41.6 53.2 106.5
Time (min) 25 21 16 8

Table 2: Values of SR for the approximation in the pixel-intensity domain of the images listed in

the first row. SR2D indicates the SR for the plane by plane approximation in partition of block side

Nb = 8, 16, and 24. SR3D corresponds to a partition in 3D blocks of size 8 × 8 × 8. The times for

completing the approximations are given immediately below the sparsity results in minutes.

Every block in the partition is approximated up to the same error. With all the approaches,
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two global values of SNR (31 dB and 33 dB) were considered. These values of SNR correspond

to the values of PSNR shown in Tables 2 and Table 3. In all of the cases the approximations

are of excellent visual quality.

The SRs produced by the 3D approximation are indicated by SR3D and those produced by

the 2D plane by plane approximation by SR2D. The times for completing the approximations

are given in the row right after the corresponding sparsity result.

Image Ribei. Graff. Rose Col.

SNR= 31 dB
PSNR 46.8 48.2 47.8 46.7
SR2DNb = 8 28.6 26.8 38.6 56.5
Time (min) 1.4 1.5 1.2 0.8
SR2DNb = 16 36.5 34.1 63.4 144.8
Time (min) 2.7 3.5 2.3 0.9
SR2DNb = 24 37.2 35.7 71.1 193
Time (min) 9.2 12 4.8 1.8
SR3DNb = 8 86.5 108.0 182.2 371.7
Time (min) 13 10 6 3

SNR= 33 dB
PSNR 48.8 50.2 49.9 48.7
SR2DNb = 8 22.6 21.8 33.0 56.1
Time (min) 1.7 1.8 1.5 1.0
SR2DNb = 16 26.6 25.8 48.2 118.3
Time (min) 3.5 5.0 2.3 1.1
SR2DNb = 24 21.9 26.8 52.0 144.0
Time (min) 12 15 8.5 1.9
SR3DNb = 8 55.1 70.5 129.5 313.3
Time (min) 23 18 10 1.8

Table 3: Same description as in Table 2, but the approximations are realized by applying first a

wavelet transform to each of the 32 channels.

Remark 3: In both Table 2 and Table 3 the values of SR3D are significantly larger than the

values of SR2D, except for the Col. image and 24× 24 blocks. For this image we were able to

increase the 3D block size up to 16× 16× 16 and the results for SNR = 31dB are SR3D = 357

in the pd and SR3D = 892 in the wd (35 min and 10 min respectively). For SNR = 33 dB
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SR3D = 247 in the pd and SR3D = 590 in the wd (55 min and 20 min respectively).

On comparing the two tables a drastic improvement in the values of SR3D is observed when

the approximation is realized in the wavelet domain. This feature is a consequence of the

fact that the planes of the natural images are very sparse in the wavelet domain. In order to

highlight differences we produce next the SR3D corresponding to the two remote sensing images

in Fig. 7. The graph on the left represents the Urban remote sensing hyper-spectral image

taken from [57]. The graph on the right is a portion of the University of Pavia image also taken

from [57].

Figure 7: Illustration of two remote sensing hyper-spectral images taken from [57]. The graph on

the left is the Urban image (size 320 × 320 × 128 pixels). The graph on the right is a portion of the

University of Pavia image (256× 256× 96 pixels).

Fig. 8 plots the SR vs four values of SNR, corresponding to the 3D approximations of the

Urban and University of Pavia images in both the pd and wd.

Notice that the results in the pd are much closer to the results in the wd than they are in

the case of the natural images in Fig. 6. This is because, as illustrated in Fig. 9, the planes of

the remote sensing images are not as sparse in the wd as the planes of the natural images are.
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Figure 8: SR vs SNR values for the 3D approximation in both the pd and wd for the Urban and

University of Pavia remote sensing images.
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Figure 9: Absolute value of the wavelet transform of a plane in the Col. image (left graph) and in
the University of Pavia image (right graph).

5 Conclusions

High quality approximation of 3D images has been considered within the context of data re-

duction. A remarkable improvement in sparsity achieved by the simultaneous approximation

of multiple channels has been illustrated through numerical experiments of different natures.

Firstly it was demonstrated that a standard data set of RGB images can be approximated

at high quality using far fewer elementary components if each image is treated as a very thin

3D array instead of as 3 independent 2D arrays. Secondly the full power of the approach was

demonstrated through the approximation of hyper-spectral images. For the hyper-spectral nat-
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ural images the sparsity is remarkably higher if the approximation is realized in the wavelet

domain. For the remote sensing images the domain of approximation has less influence because,

as opposed to natural images, these images are not as sparse in the wavelet domain as natural

images are.

Taking into account the major reduction of dimensionality demonstrated by the numerical

examples in this work, we feel confident that the proposed approach will be of assistance to the

broad range of image processing applications which rely on a transformation for data reduction

as a first step of further processing.
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