
A simple scheme for compressing sparse
representation of melodic music

Laura Rebollo-Neira
Mathematics Department
Aston University
B3 7ET, Birmingham, UK

Ivandro Sanches
Centro Universitario FEI
São Bernardo do Campo, São Paulo, Brazil

A simple scheme for compressing sparse representation of melodic
music is outlined. The method is designed to store the output of sparse
approximation of that class of signals. Sparsity is achieved using a
trigonometric dictionary and a dedicated greedy strategy aiming at
approximating the signal at good point-wise quality. Comparisons with
the popular MP3 standard illustrate the suitability of the scheme for
storing, in a small file, sparse approximation of melodic music.

Introduction: Sparse representation of music refers to techniques for
approximating a music signal as a superposition of as few elements
as possible. These elements, frequently called ‘atoms’, ‘codebooks’, or
’codewords’, are selected from a redundant set, called a ‘dictionary’. In
the area of music information retrieval a number of different tasks have
been shown to benefit by the sparsity of a representation [1–3]. This letter
presents the proof of concept demonstrating that the outputs of sparse
representation of melodic music can be stored in file of competitive size
with respect to the popular MP3 format. The procedure is illustrated
using a particular dictionary and a particular mathematical method for
the selection of atoms. Nevertheless, the same scheme could be used
with different dictionaries and/or other selection methods.

Let RNb be the space of real vectors of length Nb and D= {dn ∈
RNb ; ‖dn‖= 1}Mn=1, with M >Nb, a dictionary for RNb . Given a
signal f ∈RNb partitioned into Q frames fq ∈RNb , q= 1, . . . , Q, the
kq-term approximation f

kq
q of each frame fq is an atomic decomposition

of the form

f
kq
q =

kq∑
n=1

cq(n)d`qn , q= 1, . . . , Q. (1)

The particular dictionary atoms d`qn , n= 1, . . . , kq in (1) will be
selected through the Optimized Hierarchized Block Wise Optimized
Orthogonal Matching Pursuit (OHBW-OOMP) method [4]. Hereafter
the model (1) will be termed sparse approximation (SA) of a given signal
partitioned into Q frames. The dictionary we consider is the union of the
sine and cosine redundant dictionaries, which has been already shown
to be suitable for approximating melodic music [4, 5]. In particular, a
local measure of sparsity rendered by this dictionary has been shown to
give meaningful information about the signal variation along time [5].
We follow on the previous work by presenting an effective procedure to
save the outputs of the method.

A simple coding strategy: The coefficients resulting from approximating
a signal by partitioning, as in (1), are converted into integer numbers as
follows:

c∆q (n) = b
|cq(n)|

∆
+

1

2
c, (2)

where bxc indicates the largest integer number smaller or equal to
x and ∆ is the quantization parameter. The signs of the coefficients,
represented as sq , q= 1, . . . , Q, are encoded separately using a binary
alphabet.

The indices of the atom in the atomic decompositions of each frame
fq are firstly sorted in ascending order `qi → ˜̀q

i , i= 1, . . . , kq , which
guarantees that, for each q value, ˜̀q

i <
˜̀q
i+1, i= 1, . . . , kq − 1. This

order of the indices induces an order in the coefficients, c∆
q → c̃∆

q and
in the corresponding signs sq→ s̃q . By defining δqi = ˜̀q

i − ˜̀q
i−1, i=

2, . . . , kq the follow string stores the indices for frame q with unique

recovery ˜̀q
1, δ

q
2 , . . . , δ

q
kq

. The number ‘0’ is then used to separate the
string corresponding to different frames and entropy code a long string,
stind, which is built as

stind = [˜̀11, . . . , δ
1
k1
, 0, ˜̀21, . . . , δ

2
k2
, 0, · · · , ˜̀kQ1 , . . . , δQkQ

]. (3)

The corresponding quantized magnitude of the coefficients are
concatenated in the strings stcf as follows:

stcf = [c̃∆1 (1), . . . , c̃∆1 (k1), · · · , c̃∆kQ (1), . . . , c̃∆kQ (kQ)]. (4)

Using ‘0’ to store a positive sign and ‘1’ to store negative one, the signs
are placed in the string, stsg as

stsg = [s̃1(1), . . . , s̃1(k1), · · · , s̃kQ (1), . . . , s̃kQ (kQ)]. (5)

The next encoding/decoding scheme summarizes the above described
procedure.
Encoding

• Given a partition fq ∈RNb , q= 1, . . . , Q of a signal, approximate it
with K =

∑Q
q=1 kq atoms by the atomic decompositions:

f
kq
q =

kq∑
n=1

cq(n)d`qn , q= 1 . . . , Q. (6)

• Quantize the absolute value coefficients in the above equation to
obtain c∆q (n), n= 1, . . . , kq , q= 1, . . . , Q.
• For each q, sort the indices `q1, . . . , `kq in ascending oder to have a

new order ˜̀q
1, . . . ,

˜̀
kq and the re-ordered sets s̃q(1), . . . , s̃q(kq), and

c̃q(1), . . . , c̃q(kq), to create the strings: stind, as in (3), and stcf , and
stsg as in (4) and (5), respectively. All these strings are encoded,
separately, using adaptive arithmetic coding.

Decoding

• Reverse the arithmetic coding to recover strings stind, stcf , stsg.
• Invert the quantization step as |c̃rq(n)|= ∆c̃∆q (n).
• Recover the approximated partition through the liner combination

f
r,kq
q =

kq∑
n=1

s̃q(n)|c̃rq(n)|d˜̀q
n
.

• Assemble the recovered signal

Note: In the numerical examples of the next section, the entropy coding
step was realized by the MATLAB functions Arith06 available on [6].

The quality of the recovered signal is assessed by the Signal-to-Noise-
Ratio (SNR) with respect to the whole signal and also with respect to
every frame in the partition snr(q), q= 1, . . . Q. Both, the mean value
(snr) and standard deviation (std) of this local quantities are relevant to
comparison of point-wise quality recovery.

Numerical Example: The comparison of the proposed scheme is
realized with respect to signals compressed by the MP3 format at the bit-
rates of 128 kilobits per second (kbps), 96 kbps, and 64 kbps. In order
to use the SNR and snr as measures of quality for comparison, the MP3
signal has to be optimized in relation to those quantities. This is carried
out by the following process.

• Shifting: Since MP3 introduces a shift with respect to the original
signal, to compute a meaningful SNR the samples should be shifted
back. Denoting by fM the numerical signal retrieved from the MP3
file, the optimal time shift τ̂ is determined as that maximizing the
cross-correlation with the original signal, i.e.

τ̂ = arg max
τ=−N/2,...,N/2

N∑
n=1

f(n)fM(n+ τ).

• Scaling: In order to neutralize the effect of any multiplicative and/or
additive constant, we allow for such two constants and adjust them to
maximize the SNR as follows: Denoting by f̂M the MP3 signal after
the shifting operation, we consider the linear form af̂M + b and fix
the values of a and b for which ‖f − (af̂M + b)‖2 takes the minimum
value.

ELECTRONICS LETTERS Vol. 00 No. 00

The test clips, originally in WAV format and sampled at 44100 Hz, are
listed in Table 1. All are short clips, the mean value length is 7 s , which
are partitioned into frames of length Nb = 1024. The upper half of the
table corresponds to single instruments and the lower half to orchestrated
clips. Since MP3 produces a snr which is in general higher than the
total SNR, we compare the compression rate to produce the same snr
as MP3. The order in which the clips appear in the tables is according
to the following criterion: The first ten solo instrument clips are listed
in ascending order of compression rate by the SA approach. The last
ten orchestrated clips are also listed in ascending order of compression
rate by the same approach. The second column displays the MP3
compression rate, fixed to be 128 kbps for all the clips. The third column
is the compression rate achieved by compressing the SA parameters
which retrieve a signal producing the same mean value of the local snr
as MP3 (snr1) and listed in the fourth column (the fifth column gives the
corresponding standard deviation). The sixth and seventh columns are
the values of mean local snr and standard deviation corresponding to the
SA approach. The last two columns show the corresponding global SNR
values.

Table 2 and 3 have an equivalent description to Table 1, but the MP3
compression rate is fixed to be 96 kbps and 64 kbps, respectively. Notice
that the order of the clips varies from one to another table.

Table 1: The clips in the first column are: Classic Guitar (C1), Chopin
Piano (C2), Bach Piano (C3), Pop Piano (C4), Rock Piano (C5), Harmonics
Guitar (C6) Rock Ballad (C7), Medieval(C8), Oboe (C9), Electric Guitar
(C10), Sextet (C11), Orchestra Horns (C12), Violins (C13), Orchestrated
(14), Quartet (15), Bach Fugue (16), Classic Orchestra(C17), Opera
Male (18), Opera Female (19), and Orchestra (20). cr1 and cr2 are the
compression rate for the MP3 and SA files, respectively. snr1 and SNR1

stand for the corresponding MP3 values and snr2 and SNR2 for the SA
ones.

Clip cr1 cr2 snr1 std snr2 std SNR1 SNR2

C1 128 59 50.1 5.2 50.1 6.4 50.1 54.6
C2 128 59 43.5 6.7 43.5 5.9 48.1 49.9
C3 128 76 53.7 4.6 53.7 3.2 48.7 55.0
C4 128 83 52.3 4.8 52.3 6.7 52.1 56.0
C5 128 90 47.7 5.9 47.7 6.3 40.7 50.9
C6 128 92 50.5 5.9 50.5 4.2 47.5 52.6
C7 128 102 48.2 3.6 48.2 1.3 44.3 48.5
C8 128 102 57.9 4.4 57.9 4.8 57.4 59.6
C9 128 109 56.1 3.2 56.1 3.2 56.2 57.0
C10 128 111 44.0 6.3 44.0 2.6 37.8 45.0

C11 128 91 40.9 4.0 41.0 4.0 39.0 42.5
C12 128 94 54.4 4.5 54.4 4.8 53.0 56.5
C13 128 95 45.1 2.9 45.1 3.3 44.7 47.0
C14 128 95 55.9 5.0 56.1 6.5 51.7 60.9
C15 128 96 41.5 6.3 41.5 5.4 35.0 45.4
C16 128 96 43.8 4.7 43.8 2.4 41.6 44.3
C17 128 98 40.2 3.1 40.2 4.8 40.0 42.4
C18 128 106 40.3 4.3 40.3 2.9 36.5 41.0
C19 128 110 37.2 5.7 37.1 4.6 32.1 39.1
C20 128 111 40.2 3.5 40.2 2.7 40.0 40.9

Conclusions: Sparse approximation of music signals is relevant, in
its own right, to music information retrieval and auditory tasks. This
work demonstrates that, by means of a simple encoding scheme, sparse
approximation of melodic music can be stored in a file of competitive
size with respect to the MP3 compression standard. Actually, for the
set of 20 test clips which have been approximated, the overall gain in
compression rate, with respect to the 128 kbps corresponding to MP3,
is 27%. The gain increases up to 30% with respect to the 96 kbps
produced by MP3, and it further increases up to 47% with respect to the
64 kbps of MP3. The latter improvement is in line with the fact that for
64 kbps the reconstruction quality corresponds to values of SNR in the
rage of (30dB, 34dB), for most solo instruments, and of (20dB, 30dB)
for most orchestrated clips. These are the values of SNR for which the
trigonometric dictionary considered here had been previously shown to
render approximations of high sparsity [5].

Note: The scripts and MATLAB functions for reproducing the Tables
1, 2, and 3, can be downloaded on [7]. The original clips, as well as the
compressed and recovered files have been made available on that site.

Table 2: Equivalent description to Table 1 but fixing the compression
ration of MP3 equal to 96 kbps.

Clip cr1 cr2 snr1 std snr2 std SNR1 SNR2

C1 96 49 47.3 4.7 47.3 6 45.7 51.6
C9 96 49 45.6 5.4 45.6 3.2 39.8 45.6
C2 96 53 40.6 5.8 40.6 5.7 44.1 43.3
C3 96 63 48.3 5.1 48.3 3.1 45.0 49.5
C5 96 65 39.6 5.1 39.6 5.7 39.6 42.7
C4 96 67 47.4 4.9 47.4 5.9 44.4 51.5
C10 96 73 35.7 6.3 35.7 2.7 29.7 36.7
C6 96 75 44.6 5.7 44.6 4.1 42.8 46.7
C7 96 77 36.7 4.0 40.0 1.4 36.7 40.3
C8 96 82 52.9 4.2 52.9 4.2 53.3 54.7

C12 96 64 47.6 4.5 47.6 4.6 46.1 49.5
C11 96 65 36.2 3.6 36.2 3.8 34.7 37.6
C17 96 65 35.7 3.3 35.9 4.3 35.7 38.0
C13 96 67 40.6 3.0 40.6 3.1 39.7 42.3
C14 96 68 50.0 5.4 50.0 6.1 44.9 54.4
C18 96 70 34.7 4.2 34.7 3.0 31.3 35.3
C15 96 70 35.9 5.9 35.9 5.4 30.0 39.7
C16 96 74 36.4 3.7 36.5 2.4 34.9 36.9
C20 96 74 36.4 3.7 36.4 2.4 34.9 36.9
C19 96 79 31.7 5.5 31.7 4.5 27.1 33.6

Table 3: Equivalent description to Table 1 but fixing the compression
ration of MP3 equal to 64 kbps.

Clip cr1 cr2 snr1 std snr2 std SNR1 SNR2

C9 64 12 29.5 4.0 29.5 3.6 28.1 30.3
C2 64 23 30.7 4.7 30.8 6.9 30.3 36.8
C8 64 27 34.3 5.3 34.4 4.5 32.1 36.2
C1 64 28 39.2 6.5 39.2 5.6 32.5 43.3
C3 64 37 37.0 5.2 37.0 3.1 34.5 38.1
C4 64 38 34.4 4.6 34.4 5.7 31.3 38.1
C10 64 38 25.3 2.4 25.4 2.3 23.1 26.1
C5 64 40 30.7 3.6 30.7 5.6 28.1 33.8
C7 64 46 29.0 3.0 29.0 1.3 27.6 29.3
C6 64 50 34.1 4.7 34.1 4.0 33.0 36.2

C12 64 25 33.5 4.6 33.5 4.6 32.0 35.3
C13 64 25 28.2 3.1 28.2 2.8 26.8 30.1
C17 64 26 25.4 3.0 25.4 4.3 24.7 27.6
C11 64 28 24.1 2.4 24.1 3.7 23.4 25.6
C14 64 29 36.1 6.4 36.1 5.9 31.3 40.5
C20 64 32 26.0 2.7 26.0 2.7 25.7 26.7
C18 64 32 23.6 3.1 23.6 2.8 22.2 24.1
C19 64 39 23.0 4.6 23.0 4.4 19.7 24.5
C15 64 43 27.4 4.3 27.4 5.3 24.3 31.1
C16 64 46 25.9 3.0 25.9 2.2 25.2 26.3

Acknowledgements

The authors are grateful to Karl Skretting for making available the
Arith06 function [6]. The test clips for the numerical examples are from
free-loops.com and sample WAV files on onclassical.com

References

1 Y. Vaizman, B. McFee, and G. Lanckriet, “Codebook-based audio feature
representation for music information retrieval”, IEEE/ACM Transactions
on Audio, Speech and Language Processing, 22, 1483–1493 (2014).

2 Y. Han, S. Lee, J. Nam, and K. Lee, “Sparse feature learning for
instrument identification: Effects of sampling and pooling methods”, The
Journal of the Acoustical Society of America 139, 2290–2298 (2016).

3 H. Henaff , K. Jarrett , K. Kavukcuoglu , and Y. LeCun , “Unsupervised
learning of sparse features for scalable audio classification”, in
Proceedings of the 15th International Society for Music Information
Retrieval Conference (2014), 77–82.

4 L. Rebollo-Neira, “Cooperative Greedy Pursuit Strategies for Sparse
Signal Representation by Partitioning”, Signal Processing, 125, 365–375
(2016).

5 L. Rebollo-Neira and G. Aggarwal, “A dedicated greedy pursuit algorithm
for sparse spectral modelling of music sound”, Journal of The Acoustic
Society of America, 140, 2933–2943 (2016).

6 http://www.ux.uis.no/∼karlsk/proj99
7 http://www.nonlinear-approx.info/examples/
node07.html

2

