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Abstract5

A dedicated algorithm for sparse spectral representation of music sound is presented. The goal6

is to enable the representation of a piece of music signal as a linear superposition of as few7

spectral components as possible, without affecting the quality of the reproduction. A repre-8

sentation of this nature is said to be sparse. In the present context sparsity is accomplished9

by greedy selection of the spectral components, from an overcomplete set called a dictionary.10

The proposed algorithm is tailored to be applied with trigonometric dictionaries. Its distinctive11

feature being that it avoids the need for the actual construction of the whole dictionary, by12

implementing the required operations via the Fast Fourier Transform. The achieved sparsity13

is theoretically equivalent to that rendered by the Orthogonal Matching Pursuit method. The14

contribution of the proposed dedicated implementation is to extend the applicability of the15

standard Orthogonal Matching Pursuit algorithm, by reducing its storage and computational16

demands. The suitability of the approach for producing sparse spectral representation is il-17

lustrated by comparison with the traditional method, in the line of the Short Time Fourier18

Transform, involving only the corresponding orthonormal trigonometric basis.19

Keywords: Sparse Representation of Music Signals; Self Projected Matching Pursuit.20

PACS: 43.75.Zz, 43.6021
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I Introduction22

Spectral representation is a classical approach which plays a central role in the analysis and23

modelling of both, music sounds (Serra and Smith, 1990; Fletcher and Rossing, 1998; Davy24

and Godsill, 2003) and acoustic properties of music instruments (Wolfe et al., 2001).25

Available techniques aiding the spectral analysis of music range from the Fast Fourier26

Transform (FFT) and Short Time Fourier Transform (STFT) to several classes of joint Time27

Frequency/Scale distributions (Alm and Walker, 2002; Smith 2011) and atomic representations28

(Mallat and Zhang, 1993; Gribonval and Bacry, 2003).29

In this Communication we focus on the representation of a digital piece of music, as the30

superposition of vectors arising by the discretization of trigonometric functions. The aim is to31

represent segments of a sound signal, as a linear combination of as few spectral components as32

possible without affecting the quality of the sound reproduction. We referrer to the sought rep-33

resentation as piecewise sparse spectral representation of music sound. Additionally to the typ-34

ical advantages of sparse signal representation, the emerging theory of compressive/compressed35

sensing (Baraniuk, 2007, 2011; Donoho, 2006; Candès, et al. 2006; Candès and Wakin, 2008)36

has introduced a renewed strong reason to pursue sparse representation of music. This the-37

ory associates sparsity to a new framework for digitalization, beyond the Nyquist/Shannon38

sampling theorem. Within the compressive sensing framework, the number of measurements39

needed for accurate representation of a signal informational content decreases, if the sparsity40

of the representation improves.41

For the class of compressible signals the sparse approximation can be accomplished by rep-42

resentation in an orthonormal basis, simply by disregarding the least significant terms in the43

decomposition. Melodic music signals are known to be compressible in terms of trigonometric44

orthonormal basis. However, a much higher level of sparsity may be achieved by releasing45

the orthogonality property of the spectral components (Mallat and Zhang, 1993; Gribonval46

and Bacry, 2003; Rebollo-Neira, 2016a). The price to be paid for that is the increment in47

the complexity of the numerical algorithms producing the corresponding sparser approxima-48

tion. Practical algorithms for this purpose are known as greedy pursuit strategies (Friedman49
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and Stuetzle, 1981; Jones, 1987; Mallat and Zhang, 1993). In Gribonval and Bacry (2003) a50

dedicated Matching Pursuit method for effective implementation of the spectral model is de-51

veloped by means of well localized frequency components of variable length. In Rebollo-Neira52

(2016a) an alternative approach is considered. It involves the approximation of a signal by53

partitioning, according to the following steps: i)The signal is divided into small units (blocks)54

ii)Each block is approximated by nonorthogonal spectral components, independently of each55

other but somewhat ‘linked’ by a global constraint on sparsity or quality. The global constraint56

is fulfilled by establishing a hierarchy for the order in which each element in the partition is to57

be approximated. Thus, the method requires significant storage. Even if the global constraint58

is disregarded, and each unit approximated totally independent of the others, the algorithms59

in Rebollo-Neira (2016a) are effective for partition units of moderate length. For units of larger60

size there is a need of mathematics algorithms specialized to that situation. This is the goal of61

the present work. We propose a dedicated algorithm for nonorthogonal sparse spectral model-62

ing which, as a consequence of allowing for relatively large elements in a partition, somewhat63

reduces the need for a global constraint on sparsity. This makes it possible for the approxi-64

mation of each unit up to the same quality and completely independent of the others. The65

approach is, thereby, suitable for straightforward parallelization in multiprocessors. As far as66

sparsity is concerned, the results are theoretical equivalents to those produced by the effective67

Orthogonal Matching Pursuit method (Pati et al., 1993). The particularity of the proposed68

implementation, dedicated to trigonometric dictionaries, is that it avoids the need for storing69

the whole dictionary and reduces the complexity of calculations via the Fast Fourier Transform.70

The relevance of sparse spectral representation with trigonometric dictionaries, in the context71

of music compression with high quality recovery, is illustrated in Rebollo-Neira (2016b).72

The paper is organized as follows: Sec. II discusses the spectral model outside the traditional73

orthogonal framework. The mathematical methods for operating within the nonorthogonal74

setting are also discussed in this section, motivating the proposed dedicated approach. The75

approach is first explained and then summarized in the form of pseudocodes (Algorithms 1-76

6) given in Appendix A. The examples of Sec. III illustrate the benefit of a nonorthogonal77

framework, against the orthogonal one, in relation to the very significant gain in the sparsity of78
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the spectral representation of music signals for high quality recovery. The results presented in79

this section demonstrate the relevance of the proposed greedy strategy dedicated to be applied80

with trigonometric dictionaries. The conclusions are summarized in Sec. IV.81

II Sparse Spectral Representation82

Let’s assume that a sound signal is given by N sample values, f(j), j = 1, . . . , N , which are83

modeled by the following transformation:84

f(j) =
1√
N

M∑
n=1

c(n)eı
2π(j−1)(n−1)

M , j = 1, . . . , N. (1)

For M = N the set of vectors { 1√
N
eı

2π(j−1)(n−1)
M , j = 1, . . . , N}Mn=1 is an orthonormal basis for85

the subspace of N -dimensional vectors of complex components. Thus the coefficients in (1) are86

easily obtained as87

c(n) =
1√
N

M∑
j=1

f(j)e−ı
2π(j−1)(n−1)

M , n = 1, . . . ,M = N. (2)

Equations (1) and (2) can be evaluated in a fast manner via the FFT.88

Suppose now that M > N . In that case the set { 1√
N
eı

2π(j−1)(n−1)
M , j = 1, . . . , N}Mn=1 is89

no longer an orthonormal basis but a tight frame (Young, 1980, Daubechies, 1992). From a90

computational viewpoint the difference with the case M = N is much less pronounced than91

the theoretical difference. Certainly, when dealing with a tight frame the coefficients in (1) can92

still be calculated via FFT, by zero padding. The differences though with the orthogonal case93

are major.94

i) When M > N the coefficients in the superposition (1) are not unique. The addition of95

a linear combination with coefficients taken as the components of any vector in the null96

space of the transformation would not affect the reconstruction.97

ii) The tight frame coefficients calculated via FFT, by zero padding, produce the unique98

coefficients minimizing the square norm
M∑
n=1

|c(n)|2. Such a solution is not sparse.99

iii) For the case M = N the approximation obtained through (1), by disregarding coefficients100

of small magnitude, is optimal in the sense of minimizing the norm of the residual error.101
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This is not true when M > N , in which case the nonzero coefficients need to be re-102

calculated to attain the equivalent optimality (Rebollo-Neira, 2007).103

In order to construct an optimal approximation of the data by a representation of the form104

(1), with M > N but containing at most k non zero coefficients, those coefficients have to105

be appropriately calculated. Let’s suppose that we want to involve only the elements `n, n =106

1, . . . , k where each `n is a different member from the set {1, 2, · · · ,M}. Then the approximation107

model takes the form108

fk(j) =
1√
N

k∑
n=1

ck(`n)eı
2π(j−1)(`n−1)

M , j = 1, . . . , N. (3)

The superscript k in the coefficients ck(`n), n = 1, . . . , k indicates that they have to be recal-109

culated if some terms are added to (or eliminated from) the model (3). We address the matter110

of choosing the k elements in (3) by a dedicated Self Projected Matching Pursuit (SPMP)111

approach (Rebollo-Neira and Bowley, 2013).112

A Self Projected Matching Pursuit113

Before reviewing the general SPMP technique let’s define some basic notation: R,C and114

N represent the sets of real, complex and natural numbers, respectively. Boldface letters are115

used to indicate Euclidean vectors and standard mathematical fonts for their components, e.g.,116

d ∈ CN is a vector of N -components d(j) ∈ CN , j = 1, . . . , N . The operation 〈·, ·〉 indicates117

the Euclidean inner product and ‖ · ‖ the induced norm, i.e. ‖d‖2 = 〈d,d〉, with the usual118

inner product definition: For d ∈ CN and f ∈ CN
119

〈f ,d〉 =
N∑
j=1

f ∗(j)d(j),

where f ∗(j) stands for the complex conjugate of f(j).120

Let’s consider now a set D of M normalized to unity vectors D = {dn ∈ CN ; ‖dn‖ = 1}Mn=1121

spanning CN . For M > N the over-complete set D is called a dictionary and the elements122

are called atoms. Given a signal, as a vector f ∈ CN , the k-term atomic decomposition for its123

approximation takes the form124

fk =
k∑

n=1

ck(`n)d`n . (4)
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The problem of how to select from D the k elements d`n , n = 1 . . . , k, such that ‖fk − f‖ is125

minimal, is an NP-hard problem (Natarajan, 1995). The equivalent problem, that of finding126

the sparsest representation for a given upper bound error, is also NP hard. Hence, in practical127

applications one looks for ‘tractable sparse’ solutions. This is a representation involving a128

number of k-terms, with k acceptable small in relation to N . Effective techniques available for129

the purpose are in the line of Matching Pursuit Strategies. The seminal approach, Matching130

Pursuit (MP), was introduced with this name in the context of signal processing by Mallat and131

Zhang (1993). Nevertheless, it had appeared previously as a regression technique in statistics132

(Friedman and Stuetzle, 1981) where the convergence property was established (Jones, 1989).133

The MP implementation is very simple. It evolves by successive approximations as follows.134

Let Rk be the k-th order residue defined as Rk = f − fk, and `k the index for which the135

corresponding dictionary atom d`k yields a maximal value of |〈dn,Rk〉|, n = 1, . . .M . Starting136

with an initial approximation f0 = 0 and R0 = f−f0 the algorithm iterates by sub-decomposing137

the k-th order residue into138

Rk = 〈dn,Rk〉dn + Rk+1, n = 1, . . . ,M, (5)

which defines the residue at order k+1. Because the atoms are normalized to unity Rk+1 given139

in (5) is orthogonal to all dn, n = 1, . . . ,M . Hence it is true that140

‖Rk‖2 = |〈dn,Rk〉|2 + ‖Rk+1‖2, n = 1, . . . ,M, (6)

from where one gathers that the dictionary atom d`k yielding a maximal value of |〈Rk,dn〉|141

minimizes ‖Rk+1‖2. Moreover, it follows from (5) that at iteration k the MP algorithm results142

in an intermediate representation of the form:143

f = fk + Rk+1, (7)

with144

fk =
k∑

n=1

〈d`n ,Rn〉d`n . (8)

In the limit k →∞ the sequence fk converges to f , or to P̂VM f , the orthogonal projection of f145

onto VM = span{d`n}Mn=1 if f were not in VM (Jones, 1987; Mallat and Zhang, 1993; Partington146
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1997). Nevertheless, if the algorithm is stopped at the kth-iteration, fk recovers an approxima-147

tion of f with an error equal to the norm of the residual Rk+1 which, if the selected atoms are148

not orthogonal, will not be orthogonal to the subspace they span. An additional drawback of149

the MP approach is that the selected atoms may not be linearly independent. As illustrated in150

Rebollo-Neira and Bowley (2013), this drawback may significantly compromise sparsity in some151

cases. A refinement to MP, which does yield an orthogonal projection approximation at each152

step, has been termed Orthogonal Matching Pursuit (OMP) (Pati et al., 1993). In addition to153

selecting only linearly independent atoms, the OMP approach improves upon MP numerical154

convergence rate and therefore amounts to be, usually, a better approximation of a signal after155

a finite number of iterations. OMP provides a decomposition of the signal of the form:156

f =
k∑

n=1

ck(`n)d`n + R̃k, (9)

where the coefficients ck(`n) are computed to guarantee that157

k∑
n=1

ck(`n)d`n = P̂Vkf , with Vk = span{d`n}kn=1. (10)

The coefficients giving rise to the orthogonal projection P̂Vkf can be calculated as ck(`n) =158

〈bkn, f〉, where the vectors bkn, n = 1, . . . , k are biorthogonal to the selected atoms d`n , , n =159

1, . . . , k and span the identical subspace, i.e., Vk = span{bkn}kn=1 = span{d`n}kn=1. These coef-160

ficients yield the unique element fk ∈ Vk minimizing ‖fk − f‖. A further optimization of MP,161

called Optimized Orthogonal Matching Pursuit (OOMP) improves on OMP by also selecting162

the atoms yielding stepwise minimization of ‖fk − f‖ (Rebollo-Neira and Lowe, 2002). Both163

OMP and OOMP are very effective approaches for processing signals up to some dimension-164

ality. They become inapplicable, due to its storage requirements, when the signal dimension165

exceeds some value. Since large signals are approximated by partitioning, up to some size of the166

partition unit both OMP and OOMP are suitable tools. For considering units of size exceeding167

the limit of OMP applicability, the alternative implementation, SPMP, which yields equivalent168

results (Rebollo-Neira and Bowley, 2013) is to be applied. The latter is based on the fact that,169

as already mentioned, the seminal MP approach converges asymptotically to the orthogonal170

projection onto the span of the selected atoms. Hence MP itself can be used to produce an171
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orthogonal projection of the data, at each iteration, by self-projections. The orthogonal pro-172

jection is realized by subtracting from the residue its approximation constructed through the173

MP approach, but only using the already selected atoms as dictionary. This avoids the need174

of computing and storing the above introduced vectors bkn, n = 1, . . . , k, for calculating the175

coefficients in (10).176

The SPMP method progresses as follows (Rebollo-Neira and Bowler, 2013). Given a dic-177

tionary D = {dn ∈ CN ; ‖dn‖ = 1}Mn=1 and a signal f ∈ CN , set S0 = {∅}, f0 = 0, and R0 = f .178

Starting with k = 1, at each iteration k implement the steps below.179

i) Apply the MP criterion described above for selecting one atom from D, i.e., select `k such180

that181

`k = arg max
n=1,...,M

|〈dn,Rk−1〉| (11)

and assign Sk = Sk−1 ∪d`k . Update the approximation of f as fk = fk−1 + 〈d`k ,Rk−1〉d`k182

and evaluate the new residue Rk = f − fk.183

ii) Approximate Rk using only the selected set Sk as the dictionary, which guarantees the184

asymptotic convergence to the approximation P̂VkR
k of Rk, where Vk = span{Sk}, and185

a residue R⊥ = Rk − P̂VkR
k having no component in Vk.186

iii) Set fk ← fk + P̂VkR
k,Rk ← R⊥, k ← k + 1, and repeat steps i) - iii) until, for a required187

ρ, the condition ‖Rk‖ < ρ is reached.188

B Dedicated SPMP algorithm for sparse spectral decomposition189

Even if SPMP reduces the storage requirements for calculating and adapting the coefficients190

of an atomic decomposition, storage and complexity remains an issue for processing a signal191

by partitioning in units of considerable size. Notice that the SPMP method involves repetitive192

calculations of inner products. The advantage of using a trigonometric dictionary, in addi-193

tion to rendering highly sparse representations in relation to a trigonometric basis, is that a194

trigonometric dictionary allows the design of a dedicate SPMP implementation, which avoids195

the construction and storage of the actual dictionary by calculating inner products via FFT.196

From now on we shall make use of the knowledge that a piece of music is given by real num-197
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bers, i.e. f ∈ RN . The dictionaries we consider for producing sparse spectral decompositions of198

the data are: the Redundant Discrete Fourier (RDF) dictionary, Df , the Redundant Discrete199

Cosine (RDC) dictionary, Dc, and the Redundant Discrete Sine (RDS) dictionary, Ds, defined200

below.201

• Df = { 1√
N
eı

2π(j−1)(n−1)
M , j = 1, . . . , N}Mn=1.202

• Dc = { 1
wc(n)

cos(π(2j−1)(n−1)
2M

), j = 1, . . . , N}Mn=1.203

• Ds = { 1
ws(n)

sin(π(2j−1)n
2M

), j = 1, . . . , N}Mn=1,204

where wc(n) and ws(n), n = 1, . . . ,M are normalization factors as given by205

wc(n) =


√
N if n = 1,√
N
2

+
sin(

π(n−1)
M

) sin(
2π(n−1)N

M
)

2(1−cos(
2π(n−1)

M
))

if n 6= 1.

206

ws(n) =


√
N if n = 1,√
N
2
− sin(πn

M
) sin( 2πnN

M
)

2(1−cos( 2πn
M

))
if n 6= 1.

For M = N each of the above dictionaries is an orthonormal basis, the Orthogonal Discrete207

Fourier (ODF), Cosine (ODC), and Sine (ODS) basis, henceforth to be denoted as Bf Bc and208

Bs respectively. The joint mixed dictionary Dcs = Dc ∪ Ds, with Dc and Ds having the same209

number of elements, is an orthonormal basis for M = N
2

, the Orthogonal Discrete Cosine-Sine210

(ODCS) basis to be indicated as Bcs. If M > N
2

, Dcs becomes a Redundant Discrete Cosine211

and Sine (RDCS) dictionary.212

For facilitating the discussion of fast calculation of inner products with trigonometric atoms,213

given a vector y ∈ CN , let’s define214

F(y, n,M) =
N∑
j=1

y(j)e− ı 2π
(n−1)(j−1)

M , n = 1, . . . ,M. (12)

When M = N (12) is the Discrete Fourier Transform of vector y ∈ CN , which can be evaluated215

using FFT. If M > N we can still calculate (12) via FFT by padding with (M − N) zeros216

the vector y. Equation (12) can also be used to calculate inner products with the atoms in217

dictionaries Dc and Ds. Indeed,218

N∑
j=1

cos
π(2j − 1)(n− 1)

2M
y(j) = Re

(
e− ı

π(n−1)
2M F(y, n, 2M)

)
, n = 1, . . . ,M. (13)
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and219

N∑
j=1

sin
π(2j − 1)(n− 1)

2M
y(j) = − Im

(
e− ı

π(n−1)
2M F(y, n, 2M)

)
, n = 2, . . . ,M + 1, (14)

where Re(z) indicates the real part of z, Im(z) its imaginary part, and the notation F(y, n, 2M)220

implies that the vector y in padded with (2M −N) zeros.221

We associate the dictionaries Df ,Dc,Ds and Dcs to the cases I, II, III, and IV, of the222

dedicated SPMP Algorithm (SPMPTrgFFT), which is developed in Algorithm 6 of Appendix223

A, by recourse to the procedures given in Algorithms 1-5.224

C Procedures for an implementation of the SPMP method dedi-225

cated to trigonometric dictionaries226

Let us recall once again that the aim of the present work is to be able to apply the SPMP227

algorithm, witch is theoretically equivalent to the OMP method, but without evaluating and228

storing the dictionaries Df ,Dc,Ds or Dcs. Instead, only the selected atoms are evaluated229

(Algorithm 2) and the inner products are performed via FFT (Algorithm 1). Apart from that,230

the dedicated implementation follows the steps of the general SPMP method. Some particular231

features are worth remarking.232

• Notice that for Case I, as a consequence of the data being real numbers, it holds that233

F(y, `n,M) = F∗(y,M − `n + 2,M). Hence the atoms can be taken always in pairs, `k234

and (M − `k + 2).235

• The procedure for self projection of MP (Algorithm 5), is a recursive implementation236

of the selection procedure, but the selection is carried out only over the, say k, already237

selected atoms (Algorithm 4). Then the calculation of the relevant inner products is238

worth being carried out via FFT only for values of k larger than
M

N
log2M .239

• In order to provide all the implementation details of the proposed method in a clear and240

testable manner, we have made publicly available a MATLAB version of the pseudocodes241

(Algorithms 1-6), as well as the script and the signals which will allow the interested re-242

searcher to reproduce the numerical results in this paper 1. The MATLAB routines should243
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be taken only as ‘demonstration material’. They are not intended to be an optimized im-244

plementation of the algorithms. Such optimization should depend on the programming245

language used for practical applications.246

III Numerical Examples247

We apply now the SPMPTrgFFT algorithm to produce a sparse spectral representation of the248

sound clips listed in Table 1 and Table 2. The approximation is carried out by dividing the249

signals into disjoint pieces fq ∈ RNb , q = 1, . . . , Q of uniform length Nb, i.e., f = ĴQq=1fq, where250

Ĵ indicates a concatenation operation and N = QNb.251

The purpose of the numerical example is to illustrate the relevance of the method to produce252

sparse spectral representation of music, in comparison to the classical orthogonal representation253

in the line of STFT. Each segment q is approximated up to the same quality. The sparsity254

is measured by the Sparsity Ratio (SR) defined as SR =
N

K
, where K is the total number255

of coefficients in the signal representation, i.e, denoting by kq the number of coefficients for256

approximating the q-th segment K =
∑Q

q=1 kq.257

As a measure of approximation quality we use the standard Signal to Noise Ratio (SNR),258

SNR = 10 log10

‖f‖2

‖f − fk‖2
= 10 log10

∑Nb,Q
j=1
q=1

|fq(j)|2∑Nb,Q
j=1
q=1

|fq(j)− fkq (j)|2
.

All the clips of Table 1 are approximated up to SNR=35dB. The approximation has been259

carried out using all the dictionaries introduced in Sec. B, with redundancy four, and all the260

concomitant orthogonal basis. Due to space limitation only the best results produced by a261

dictionary, and by a basis, are reported. The best dictionary results are rendered by the262

mixed dictionary Dcs. Nevertheless, in the case of a basis the best results are achieved by the263

cosine basis Bc. The approximation of all the clips in Table 1 was carried out for partitions264

corresponding to Nb equal to 512, 1024, 2048, 4096, 8192, and 16384 samples. For space265

limitation only the sparsity results corresponding to all those values of Nb are shown for the266

first two clips of the table. Fig. 1 gives the classic spectrogram for the Flute Exercise and267

Classical Guitar. Fig. 2 shows the values of the SR for those clips, as a function of the partition268

unit size Nb. As seen in the figures, for all the values of Nb, the gain in sparsity produced269
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Figure 1: (Color online only) Spectrograms of the Flute Exercise clip (left) N = 65536 samples at
22050 Hz, and that of the Classic Guitar, N = 262144 samples at 44100Hz. Each spectrogram was
produced using a Hamming window of length 4096 samples and 50% overlap.
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Figure 2: (Color online only) SR, for the Flute Exercise clips (left) and Classical Guitar (right)
corresponding to values of Nb equal to 512, 1024, 2048, 4096, 8192, and 16384 samples. The squares
are the SR values obtained with the orthogonal basis Bc. The circles are the results produced by the
mixed dictionary Dcs, redundancy four, by means of the proposed algorithm.

by the dictionary (represented by the circles in Fig. 2) in relation to the best result for the270

basis (squares in those figures) is very significant. Table 1 shows the values of SR for the clips271

listed in the first column, using the basis Bc and the dictionary Dcs with the methods MP and272

SPMP. The value of Nb is set as that producing the best SR for the orthogonal basis Bc which,273

as illustrated in the left graph of Fig. 2, is not always the optimal value for the dictionary274

approach. The implementation of the MP algorithm via FFT, which we call MPTrgFFT, is275

ready realized simply by deactivating the self projection step. The clips in Table 1 are played276

with a variety of instruments. The sampling frequencies are: 22050 Hz for the Flute Exercise277

and Himno del Riego, 48000 Hz for the Polyphon, and 44100 Hz for all the other clips. The278

SR varies significantly, from the sparsest clip (Oboe in C) to the least sparse one (Polyphon).279
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Clip Nb SR (Bc) SR (MP) SR (SPMP)

Flute Exercise 8192 6.5 11.8 13.9
Classic Guitar 16384 18.7 26.6 31.4

Rock Piano 2048 6.9 10.2 12.0
Pop Piano 8192 11.7 15.1 18.0

Rock Ballad 8192 6.8 8.9 10.5
Bach Piano 4096 11.8 14.8 17.4

Trumpet Solo 8192 8.3 11.9 14.7
Himno del Riego 4096 4.9 7.6 8.9

Oboe in C 16384 13.7 44.1 53.5
Classical Romance 8192 7.2 11.2 13.4

Jazz Organ 8192 18.7 22.5 28.1
Marimba Jazz 1024 11.8 15.3 18.6

Begana 2048 8.5 10.0 12.0
Vibraphone 2048 12.7 20.1 23.8

Polyphon 4096 3.7 6.1 7.1

Table 1: SR obtained with the basis Bc and the dictionary Dcs, through the MP and SPMP methods,
for the clips listed in the first column. The value of the partition unite Nb is the one corresponding to
the best SR result with the basis Bc when Nb takes the values 512, 1024, 2048, 4096, 8192, and 16384.

Nevertheless, the gain in sparsity obtained with the trigonometric dictionaries, in relation to280

the best orthogonal basis, is in most cases very significant. Notice that drums are not included281

in the list. The reason being that drum loops are best approximated when the partition size282

is considerably smaller than for the instruments in Table 1. Hence, the proposed algorithm is283

not of particular help in that case. On the contrary, as discussed in Sec. I, a method linking284

the approximation of the elements in the partition through a global constraint on sparsity, or285

quality, is much better suited to that situation (Rebollo-Neira 2016a). The same holds true286

for speech signals. Additionally, we understand that drum loops do not fall within the class287

of music that can be sparsely represented only with trigonometric atoms of the type we are288

considering here.289

In order to compare the improvement in SR produced by the SPMP method (SRSPMP) over

the MP one (SRMP) we defined the relative gain in sparsity as follows:

G =
SRSPMP − SRMP

SRMP

100% (15)

For the results of Table 1 the mean value gain is Ḡ = 19.4% with standard deviation of 2.4%.290

Fig. 3 gives a visual representation of the implication of the SR value. The left graphs is a291
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Figure 3: (Color online only) The left graph is the classic spectrogram of the Polyphon clip obtained
with a Hamming window of length 4096 samples and 50% overlap. The right graph is the sparser
version of the spectral decomposition, realized by the trigonometric dictionary and the SPMPTrgFFT
algorithm, on a partition of disjoint units of size Nb = 4096.

classic spectrogram for the Polyphon clip, which has been re-scaled to have the maximum value292

equal to one. The right graph is the sparse spectral representation constructed with the outputs293

of the SPMPTrgFFT algorithm (also re-scaled to have maximum value equal to one). Because294

the spectrograms are given in dB, and the sparse one has zero entries, the value 10−13 was295

added to all the spectral power outputs to match scales.296

In order to give a description of local sparsity we consider the local sparsity ratio srq =297

Nb
kq
, q = 1, . . . , Q, where kq is the number of coefficients in the decomposition of the q-block and298

Nb the size of the block. For illustration convenience the graphs in Figs. 4 depict the inverse of299

this local measure. The points in those figures represent the values 1/srq, q = 1, . . . , Q. Each300

of these values is located in the horizontal axis at the center of the corresponding block. For301

each signal the size of the block is taken to be the value Nb yielding the largest SR with the302

dictionary approach, for that particular signal.303

The lighter lines in all the graphs of Fig. 4 represent the Flute, Marimba Classic Guitar and304

Pop Piano clips. It is interesting to see that each if the darker lines joining the inverse local305

sparsity points follows, somewhat, the shape of signal’s envelop. This is particularly noticeable306

when a transient occurs.307

As opposed to the method of Serra and Smith (1990), which would model a possible com-308

ponent of a sound clip by tracking the evolution of some frequencies along time, but in general309

would produce a significant residue, the goal of the proposed sparse spectral representation is to310
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Figure 4: (Color online only) The points joined by the darker line in all the graphs are the values of
the inverse local sparsity ratio 1/srq, q = 1, . . . , Q. The top graphs correspond to the Flute (left) and
Classic Guitar clips. The bottom graphs correspond to the Marimba (left) and Pop Piano clips. The
lighter lines represent the signals.

achieve high quality reconstruction. As indicated by the points in the graphs of Fig. 4, for some311

signals this is attained by a decomposition of low local sparsity in particular blocks. Notice,312

however, that a signal exhibiting such picks of inverse local sparsity may produce, on the whole,313

a SR which is higher than the SR of a signal endowed with more uniform local sparsity, e.g.314

Flute vs Marimba and Pop Piano. The clips of Table 1 are all played with single instruments.315

The rather high value of SNR (35dB) is set to avoid noticeable loss or artifacts in the signal316

reconstruction, which might be easy to detect due to the nature of the sound. Nevertheless,317

for the clips of Table 2, which are played by multiple instruments, for SNR=25dB (and even318

lower) we do not perceive loss or artifacts. Hence, the sparsity results of Table 2 correspond319

to SNR=25dB. Overestimating the required SNR for high quality recovery would produce a320

significant reduction of the SR values.

Clip SR (Bc) SR (MP) SR (SPMP)

Classic Music (sextet) 12.2 16.2 18.4
Piazzola Tango (quartet) 10.7 13.8 15.7

Opera (female voice) 5.6 7.5 8.3
Opera (male voice) 9.2 12.0 13.5

Bach Fugue (orchestral version) 8.2 12.4 14.1
Simple Orchestra 13.1 17.6 19.8

Table 2: SR obtained with the basis Bc and the dictionary Dcs, through the MP and SPMP methods,
for the clips listed in the first column. The the partition unite size is in all the cases Nb = 4096 and
the sampling frequency 44100 Hz.

321
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For the results of Table 2 the mean value gain in SR (c.f. (15)) is Ḡ = 12.8% with standard322

deviation of 1.2%.323

Remarks on computational complexity: The increment in the computational complex-324

ity of SPMPTrgFFT with respect to MPTrgFFT is a factor which accounts for the iterations325

realizing the self-projections. In order to estimate the complexity we indicate by κ the double326

average of the number of iterations in the projection step. More specifically, indicating by κk327

the number of iterations in the k-term approximation of a fixed segment q, κq = 1
kq

∑kq
k=1 κk328

and κ =
1

Q

Q∑
q=1

κq.329

The value of κ gives an estimation of the SPMPTrgFFT complexity: O(κKM log2M). Since330

for a dictionary of redundancy r the number of elements isM = rNb, in order to make clearer the331

influence of the segment’s length in the complexity, this can be expressed as O(κKrNb log2 rNb).332

The computational complexity of plain MPTrgFFT is given by the complexity of calculating333

inner products via FFT, i.e. O(KrNb log2 rNb). Hence κ gives a measure of the increment of334

complexity introduced by the projections to achieve the desired optimality in the coefficients335

of the approximation. Fig. 5 shows the values of κ as a function of the segment’s length Nb.336

The triangles correspond to the Flute Exercise clip the starts to the Classic Guitar clip. Notice337

that for the Flute Exercise the value of κ augments significantly for the two larger values of338

Nb, while remains practically constant for the Classic Guitar. This feature is in line with the339

fact that, as seen in Fig 2, the SR for those values of Nb is practically constant for the Classic340

Guitar, but decreases for the Flute Exercise.341

IV Conclusions342

A dedicated method for sparse spectral representation of music sound has been presented.343

The method was devised for the representation to be realized outside the orthogonal basis344

framework. Instead, the spectral components are selected from an overcomplete trigonometric345

dictionary. The suitability of these dictionaries for sparse representation of melodic music, by346

partitioning, was illustrated on a number of sound clips of different nature. While the quality of347

the reconstruction is an input of the algorithm, the method is conceived to achieve high quality348
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Figure 5: (Color online only) Average number of the iterations, κ, for realizing the projection step
procedure (Algorithm 5) corresponding to partition units of length Nb equal to 512, 1024, 2048, 4096,
8192, and 16384 samples. The triangles are the values for the flute clip and the starts for the classic
guitar.

recovery. Hence, in order to benefit sparsity results the signal partition is realized without349

overlap. The approach has been shown to be worth applying to improve sparsity within the350

class of signal which are compressible in terms of a trigonometric basis. The achieved sparsity351

is theoretically equivalent to that produced by the OMP approach with the identical dictionary.352

The numerical equivalence of both algorithms was verified when possible.353

In order to facilitate the application of the approach we have made publicly available the354

MATLAB version of Algorithms 1-6 on a dedicated web page1. It is appropriate to stress,355

though, that the routines are not intended to be an optimized implementation of the method.356

On the contrary, they have been produced with the intention of providing an easy to test form357

of the approach. We hope that the MATLAB version of the algorithms will facilitate their358

implementation in appropriate programming languages for practical applications.359

Acknowledgements360

We are grateful to three anonymous reviewers for many comments and suggestions for improve-361

ments to previous versions of the manuscript. We are also grateful to Xavier Serra who has362

kindly let us have a MATLAB function for the implementation of their method (Serra and363

Smith, 1990).364

18



Notes365
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Appendix A368

Algorithm 1 Computation of inner product with a trigonometric dictionary via FFT. IP-
TrgFFT procedure: [IP] =IPTrgFFT(R,M, Case)

Input:R ∈ RN , M , number of elements in the dictionary, and Case (I , II, or III).
{Computation of the inner products IP = 〈d,R〉 ∈ CM}
Case I
IP = FFT(R,M) 1√

N
,

Case II, III (c.f. (13), (14))
{Computation of auxiliary vector Aux ∈ C2M to compute IP.}
Aux = FFT(R, 2M)
Case II
IP (n) = 1

wc(n)
Re(eı

π(n−1)
M Aux(n)), n = 1, . . . ,M

Case III
IP (n− 1) = − 1

ws(n)
Im(eı

π(n−1)
M Aux(n)), n = 2, . . . ,M + 1

Algorithm 2 Generation of an atom, given the index and the dictionary type. Trigonometric
Atom procedure: [d`k ]=TrgAt(`k,M,N, Case)

Input: Index `k, number of elements in the dictionary M , atom’s dimension N , Case (I, II,
III or IV).
Output: Atom d`k .
{Generation of the atom, d`k , according to the Case}
if Case=IV then
M ← M

2

end if
Case I

d`k(j) =
1√
N
eı

2π(j−1)(`k−1)

M , j = 1, . . . , N

Case II (and Case IV if `k ≤ M
2

)

d`k(j) =
1

wc(`k)
cos(

π(2j − 1)(`k − 1)

2M
), j = 1, . . . , N

Case III (and Case IV if `k >
M

2
)

d`k(j) =
1

ws(`k)
sin(

π(2j − 1)`k
2M

), j = 1, . . . , N
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Algorithm 3 Atom Selection via FFT. AtSelFFT procedure: [`k, c(`k)] =AtSelFFT(R,M,
Case)

Input: Residual R ∈ RN , M number of elements in the dictionary, and Case (I, II, III, or
IV)
Output: Index of the selected atom `k, and MP coefficient c(`k) = 〈d`k ,R〉 calculated via
FFT.
{Call IPTrgFFT procedure, Algorithm 1, to calculate inner products}
Case I
IP=IPTrgFFT(R,M, Case I),
Cases II and III
IP=IPTrgFFT(R,M, Case),
{Selection of the new atom and evaluation of the MP coefficient}
`k = arg max

n=1,...,M
|IP (n)|

c(`k) = IP (`k)
Case IV
M ← M

2

IPc=IPTrgFFT(R,M , Case II)
IPs=IPTrgFFT(R,M, Case III)
ν = max(|IP c(`c)|, |IP s(`s)|), with `c = arg max

n=1,...,M
|IP c(n)| and `s = arg max

n=1,...,M
|IP s(n)|

if ν = |IP s(`s)| then
`k = `s +M and c(`k) = IP s(`s)

else
`k = `c and c(`k) = IP c(`c)

end if
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Algorithm 4 Atom Re-Selection via FFT. AtReSelFFT procedure:
[`, c(`)]=AtReSelFFT(R,M,Γ, Case)

Input: Residue R ∈ RN , number of dictionary’s elements, M , set of indices of the selected
atoms Γ = {`n}kn=1 (if Case=IV both, Γc, indices for atoms in Dc, and Γs, indices for atoms
in Ds).
Output: Re-Selected index ` (out of the set Γ) and corresponding MP coefficient c(`) =
〈d`,R〉, ` ∈ Γ, calculated via FFT.
Case I
IP=IPTrgFFT(R,M, Case I),
Cases II and III
IP=IPTrgFFT(R,M, Case ),
{Selection of the index ` ∈ Γ}
` = arg max

n∈Γ

|IP (n)|

c(`) = IP (`)
Case IV
M ← M

2

IPc=IPTrgFFT(R,M, Case II)
IPs=IPTrgFFT(R,M, Case III)
ν = max(|IP c(`c)|, |IP s(`s)|, with `c = arg max

n∈Γc
|IP c(n)| and `s = arg max

n∈Γs
|IP s(n)|

if ν = |IP s(`s)| then
` = `s +M and c(`) = IP s(`s)

else
` = `c and c(`) = IP c(`c)

end if
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Algorithm 5 Orthogonal Projection via FFT. ProjMPTrgFFT procedure:
[R̃, c̃]=ProjMPTrgFFT(R,M, c,Γ, ε, Case)

Input: Residue R ∈ RN , number of elements in the dictionary, M , vectors c with the
coefficients in the k-term approximation, set Γ of selected indices up to iteration k, tolerance
for the numerical error of the projection ε, and Case (I, II, III, or IV).
Output: Updated residue, R̃ ∈ RN , orthogonal to span{dn}n∈Γ and updated coefficients c̃
accounting for the projection.
{Set µ = 2ε to start the algorithm}
while µ > ε do
{Select one index from Γ to construct the approximation of R in span{dn}n∈Γ}
[`, c̃(`)]=AtReSelFFT(R,M,Γ, Case)
{Generate the selected atom d`}
d`=TrgAt(`,M,N , Case).
{Update residue}
R← R− c̃(`)d`
{Since R is vector of real numbers}
if Case = I then
`′ = M − `+ 2,
d`′=TrgAt(`′,M,N , Case),
R← R− c̃∗(`)d`′

end if
µ = |c̃(`)|
{Update coefficient}
c(`)← c(`) + c̃(`)
if Case = I then
c(M − `+ 2)← c∗(`)

end if
end while
{Rename coefficients and residue to match the output variables}
c̃ = c, R̃ = R
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Algorithm 6 Main Algorithm for the proposed SPMP method dedicated to trigono-
metric dictionaries and implemented via FFT. Procedure SPMPTrgFFT: [fk, c,Γ] =
SPMPTrgFFT(f ,M, ρ, ε, Case)

Input: Data f ∈ RN , M , number of elements in the dictionary, approximation error ρ > 0
and tolerance ε > 0 for the numerical realization of the projection Case (I , II, III, or IV).
Output: Approximated data fk ∈ RN . Coefficients in the atomic decomposition, c, Indices
labeling the selected atoms Γ = {`n}kn=1.
{Initialization}
Set Γ = {∅}, f0 = 0, R0 = f , k = 0, µ = 2ρ
{Begin the algorithm}
while µ > ρ do
k = k + 1
{Select index `k and calculate c(`k)}
[`k, c(`k)]=AtSelFFT(Rk−1,M, Case)
{Generate the atom (.`k)}
d`k=TrgAt(`k,M,N, Case)
Updated Γ← Γ ∪ `k
{Calculate approximation and residue}
fk = fk−1 + c(`k)d`k , and Rk = f − fk

{Subtract from Rk the component in span{dn}n∈Γ}
[R̃k, c̃]=ProjMPTrgFFT(Rk,M, c,Γ, ε, Case)
{Update residue, approximation, coefficients, and error}
Rk = R̃k, fk = f −Rk; c = c̃, µ = ‖Rk‖

end while
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