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Abstract

Transformations for enhancing sparsity in the approximation of color images by 2D
atomic decomposition are discussed. The sparsity is firstly considered with respect to
the most significant coefficients in the wavelet decomposition of the color image. The
discrete cosine transform is singled out as an effective transformation for this purpose.
The enhanced feature is further exploited by approximating the transformed arrays using
an effective greedy strategy with a separable highly redundant dictionary. The relevance
of the achieved sparsity is illustrated by a simple encoding procedure. On a set of typical
test images the compression at high quality recovery is shown to significantly improve
upon JPEG, H.265, and WebP formats.

1 Introduction

In the signal processing field sparse representation usually refers to the approximation of a
signal as superposition of elementary components, called atoms, which are members of a large
redundant set, called a dictionary [1]. The superposition, termed atomic decomposition, aims
at approximating the signal involving as few atoms as possible [1–4]. Sparsity is also relevant
to data collection. Within the emerging theory of sampling known as compressive sensing (CS)
this property is key for reconstructing signals from a reduced number of measures [5–7]. In
particular, distributed compressive sensing (DCS) algorithms exploit inter signal correlation
structure for multiple signal recovery [8, 9].

Sparse image representation using redundant dictionaries has been considered in numerous
works e.g. [10–12] and in the context of applications such as image restoration [13–15], feature
extraction [16–19] and super resolution [20–23].

The sparsity property of some types of 3D images benefits from 3D processing [24–27].
In particular most RGB (Red-Green-Blue) images admit a sparser atomic decomposition if
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approximated by 3D atoms [28]. Within the 3D framework the gain in sparsity comes at
expenses of computational cost though.

The purpose of this work is to show that the application of a transformation across the
direction of the colors improves sparsity in the wavelet domain representation of the 2D color
channels. The relevance of this feature is demonstrated by a simple encoding procedure render-
ing good compression results in comparison to commonly used image compression standards.

The contributions of the paper are listed below.

• Highlighting of a distinctive feature concerning sparse representation of RGB images.
Namely, that transformations in the direction of the color channels significantly improve
the sparsity of the 2D atomic decomposition of the image.

• Demonstration that the discrete cosine transform (dct) can improve sparsity with re-
spect to the optimal decorrelation transform, i.e. that given by the eigenvectors of the
correlation matrix, which is thereby image dependent.

• Showcasing of the relevance of sparsity to image compression with high quality recovery.
On typical test images the achieved compression is shown to significantly improve upon
JPEG, WebP, and H.265 formats.

The work is organised as follows: Sec. 2 introduces the mathematical notation. Sec. 3
compares several cross color transformations enhancing sparsity. A numerical example on a
large data set is used to illustrate the suitability of the dct for that purpose. Sec. 4 demonstrates
the gain in sparsity obtained by the atomic decomposition of color images when the dct is
applied across the RGB channels. Sec. 5 illustrates the relevance of the approach to image
compression with high quality recovery. The conclusions are summarised in Sec. 6.

2 Mathematical Notation

Throughout the paper we use the following notational convention. R represents the set of real
numbers. Boldface letters indicate Euclidean vectors, 2D and 3D arrays. Standard mathemat-
ical fonts indicate components, e.g., d ∈ RN is a vector of components d(i) ∈ R, i = 1, . . . , N .
The elements of a 2D array I ∈ RLx×Ly are indicated as I(i, j), i = 1, . . . , Lx, j = 1, . . . , Ly
and the color channels of I ∈ RLx×Ly×3 as I(:, :, z), z = 1, 2, 3. The transpose of a ma-
trix, G say, is indicated as G>. A set of, say M , color images is represented by the arrays
I{m} ∈ RLx×Ly×3,m = 1, . . . ,M.

The inner product between arrays in RLx×Ly is given by the Frobenius inner product 〈·, ·〉F
as

〈G, I〉F =
Lx∑
i=1

Ly∑
j=1

G(i, j)I(i, j).

Consequently, the Frobenius norm ‖ · ‖F is calculated as

‖G‖F =

√√√√ Lx∑
i=1

Ly∑
j=1

G(i, j)2.

2



The inner produce between arrays in RN is given by the Euclidean inner product 〈·, ·〉 as

〈d,g〉 =
N∑
i=1

d(i)g(i).

3 Cross color transformations

Given a color image I(i, j, k), i = 1, . . . , Lx, j = 1, . . . , Ly, k = 1, 2, 3 the processing of the
3 channels can be realised either in the pixel/intensity or in the wavelet domain. Since the
representation of most images is sparser in the wavelet domain [28–31] we approximate in that
domain and reconstruct the approximated image by the inverse wavelet transform. Thus, using
a 3 × 3 matrix T, we construct the transformed arrays U ∈ RLx×Ly×3 and W ∈ RLx×Ly×3 as
follows

U(:, :, z) =
3∑
l=1

I(:, :, l)T (l, z), z = 1, 2, 3. (1)

W (:, :, z) = dwt(U(:, :, z)), z = 1, 2, 3, (2)

where dwt indicates the 2D wavelet transform. For the transformation T we consider the
following cases

(i) The dct.

(ii) The reversible YCbCr color space transform.

iii) The principal components (PC) transform.

iv) A transformation learned from an independent set of images.

The dct is given by the matrix
1√
3

√
2√
3

cos(π
6
)

√
2√
3

cos(π
3
)

1√
3

0
√

2√
3

cos(π)
1√
3

√
2√
3

cos(5π
6

)
√

2√
3

cos(5π
3

)

 .

The YCbCr color space transform is given by the matrix below [32]0.299 −0.169 0.5
0.587 −0.331 −0.419
0.114 0.5 −0.0813

 .

The columns of the principal components transform are the normalised eigenvectors of covari-
ance matrix of the RGB pixels. Thus, the transformation is image dependent and optimal with
respect to decorrelating the color channels.

As a first test, the approximation of the transformed channels is realised by keeping a fixed
number of the largest absolute value entries, and setting the others equal to zero. In relation
to this, for an image of size Lx × Ly × 3 we define the Sparsity Ratio (SR) as follows

SR =
Lx · Ly · 3

Number of nonzero entries in the three channels.
(3)
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The quality of a reconstructed image Ĩ, with respect to the original 8-bit image I, is compared
using the Peak Signal-to-Noise Ratio (PSNR),

PSNR = 10 log10

(
2552

MSE

)
, (4)

where

MSE =
1

Lx · Ly · 3

Lx,Ly ,3∑
i,j,z=1

(I(i, j, z)− Ĩ(i, j, z))2.

For the numerical examples below the transformation corresponding to case (iv) is learned from
a set of images I{m}, m = 1, . . . ,M all of the same size. Starting from an invertible 3 × 3
matrix Tk, with k = 1, the learning algorithm proceeds through the following instructions.

1) Use Tk to transform the arrays I{m} → Uk{m} →Wk{m} as in (1) and (2).

2) Approximate each transformed array Wk{m} to obtain W̃k{m} by keeping the largest
K absolute value entries.

3) Apply the inverse 2D wavelet transform idwt to reconstruct the approximated arrays
Ũk{m}, m = 1, . . . ,M as

Ũk{m}(:, :, z) = idwt(W̃ k{m}(:, :, z)), z = 1, 2, 3.

4) Use the original images I{m}, m = 1, . . . ,M to find G = T−1 by least squares fitting, i.e

G∗ = arg min
G(z,l)
z,l=1,2,3

E(G),

where

E(G) =
M∑
m=1

Lx,Ly ,3∑
i,j,l=1

(I{m}(i, j, l)− Ĩ{m}(i, j, l))2

with

Ĩ{m}(i, j, l)) =
3∑
z=1

Ũk{m}(i, j, z)G(z, l).

5) While E decreases, or the maximum number of allowed iterations has not been reached,
set k → k + 1, Tk = (G∗)−1 and repeat steps 1) – 5).

Given the arrays Ũk{m}, m = 1, . . . ,M the least squares problem for determining the trans-
formation Tk has a unique solution. However, the joint optimisation with respect to the arrays
Ũk{m},m = 1, . . . ,M and the transformation Tk is not convex. Hence, the algorithm’s out-
come depends on the initial value.

The transformation (iv) used in the numerical examples of Secs. 3.1 and 4.1 has been
learned from M = 100 images, all of size 384 × 512 × 3, from the UCID data set [33], which
contains images of buildings, places and cars. The learning curves for two random orthonormal
initialisations is shown in Fig. 1.

It is worth mentioning that, as shown in Fig. 1, learning is richer when starting compara-
tively distant from a local minimum (left graph in Fig. 1). However, since the convergence is
to a local minimum other random initialisations, even if generating less learning, may produce
better results (right graph in Fig. 1).

The aim of the next numerical test is to demonstrate the effect on the SR (c.f. (3)) produced
by the above (i) - (iv) transformations across the color channels.
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Figure 1: Learning curves for the transformation (iv) corresponding to two different random
orthogonal transforms initialising the process. The mean value PSNR with respect to the 100
images in the training set corresponds to SR=15 for all the images.

3.1 Numerical Test I

Using the whole Berkeley data set [34], consisting of 300 images all of size 321 × 481 × 3 we
proceed with each image as in (1) and (2). The dwt corresponds to the Cohen-Daubechies-
Feauveau 9/7 (CDF97) wavelet family. Fig. 3 shows the transformed channels of the image
in Fig.2, including the dct transformation across channels (right graph) and without T trans-
formation (left graph). As noticeable in the figure, the effect of the dct is to re-distribute the
intensity in the color channels by transferring values between channels. In particular, after
applying dct each point in the transformed channel 1 is proportional to the addition of the
intensity of the 3 channels, i.e. for z = 1 (1) becomes

U(:, :, 1) =
1√
3

(I(:, :, 1) + I(:, :, 2) + I(:, :, 3)),

while for z = 2 the contribution of the intensity of channel 2 is null. Since

U(:, :, 2) =

√
2

2
(I(:, :, 1)− I(:, :, 3)),

pixels of similar intensity in channels 1 and 3 produce pixels corresponding to small absolute
value in the transformed channel 2. Moreover, since

U(:, :, 3) = (I(:, :, 1) + I(:, :, 3))

√
3

2
√

2
−
√

3√
2
I(:, :, 2),

pixels of similar intensity in the 3 color channels would barely be noticed in the transformed
channel 3.

For the numerical test the approximations are realised fixing SR=20 and SR=10. The
reconstructed images are obtained for the approximated arrays W̃ as

Ũ(:, :, z) = idwt(W̃ (:, :, z)), z = 1, 2, 3 (5)

Ĩ(:, :, z) =
3∑

k=1

Ũ(:, :, k)(T−1(z, k)), z = 1, 2, 3 (6)
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Figure 2: One of the RGB images in the Berkeley’s data set

Figure 3: Magnitude of the entries in the array W constructed as in (2) from the image of
Fig. 2, with T the dct (right graph) and without T (left graph).

where T−1 is the inverse of T. When no transformation T is considered the image is recon-
structed directly from (5).

The 2nd and 4th columns of Table 1 show the mean value PSNR (PSNR), with respect to
the whole data set, for SR=20 and SR=10 respectively, corresponding to the transformations
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Transf. PSNR std PSNR std
(i) dct 33.9 5.0 38.9 5.1
(ii) YCbCr 33.7 5.0 38.7 5.1
(iii) PC 33.7 4.9 38.4 5.0
(iv) Learned 33.7 4.9 38.7 5.0
(v) No transf. 29.7 4.8 32.9 5.2

Table 1: Mean value PSNR, with respect to the 300 images in the Berkeley data set. The
approximation of each image is realised by setting the least significant entries in the arrays
W{m} = 1, . . . , 300 equal zero, in order to obtain SR=20 for all the images (2nd column) and
SR=10 for all the images (4th column).

T listed in the 1st column of the table. The 3rd and 5th columns give the standard deviations
(std).

While Table 1 shows that all (i) - (iv) transformations render equivalent superior results,
with respect to not applying a transformation (case (v)), the dct slightly exceeds the others.
Case (iv) refers to the best result achieved when initialising the learning algorithm with 500
different random orthonormal transformations. The resulting matrix is given below−0.620 −0.038 −0.919

−0.586 −0.848 1.017
−0.518 0.933 −0.038

 .

When initialising the algorithm with transformations (i) and (ii) it appears that each of
these transformations is close to a local minimiser of the method. This stems from the fact
that such initialisations do not generate significant learning.

The common feature of most of the 300 images in the data set used in this numerical
example is the correlation property of the three color channels. This property is assessed by
the correlation coefficients

r(z) =

∑Lx

i=1

∑Ly

j=1 Γ(i, j, z)Γ(i, j, z + 1)

σ(z)σ(z + 1)
, z = 1, 2,

r(3) =

∑Lx

i=1

∑Ly

j=1 Γ(i, j, 1)Γ(i, j, 3)

σ(1)σ(3)
,

where

Γ(i, j, z) = (I(i, j, z)− I(:, :, z)), (7)

σ(z) =

√√√√ Lx∑
i=1

Ly∑
j=1

(I(i, j, z)− I(:, :, z))2, (8)

and I(:, :, z) indicates the mean value of channel z.
As seen in the 3 histograms of Fig. 4 for most images in the data set the correlation of the

color channels is high. It is surprising then than the PC transformation (iii), which completely
decorrelates the channels, does not overperform the other transformations, on the contrary.
This feature has also been noticed in the context of bit allocation for subband color image
compression [35].
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Figure 4: Histograms of the correlation coefficients between the RGB channels.

4 Approximations by atomic decomposition

We have seen (c.f. Table 1) that by transformation of channels it is possible to gain quality
when reducing nonzero entries in the channels. Now we discuss how to improve quality further
by approximating the 2D arrays (2) by an atomic decomposition, other than just by neglecting
their less significant entries. For the approximation to be successful it is important to use
an appropriate dictionary. To this end, one possibility could be to learn the dictionary from
training data [36–43]. However as demonstrated in previous works [28, 30, 31] a separable
dictionary, which is easy to construct, is well suited for the purposes of achieving sparsity and
delivers a fast implementation of the approach. Since we use that dictionary in the numerical
examples, below we describe the method for constructing the atomic decomposition of the array
W considering specifically a separable dictionary.

Firstly we concatenate the 3 planes W (:, :, z), z = 1, 2, 3 into an extended 2D array W′ ∈
R3Lx×Ly and divide this array in small blocks W′

q, q = 1, . . . , Q. Without loss of generality the
blocks are assumed to be square of size Nb × Nb say, and are approximated using separable
dictionaries Dx = {dxn ∈ RNb , ‖dxn‖2 = 1}Mb

n=1 and Dy = {dym ∈ RNb , ‖dyn‖2 = 1}Mb
m=1.

For q = 1, . . . , Q every element W′
q ∈ RNb×Nb is approximated by an atomic decomposition

as below:

W′kq
q =

kq∑
n=1

ckq ,q(n)dx`x,qn
(dy

`
y,q
n

)T , (9)

where `
y,q
n is the index in the set {1, 2, . . . ,Mb} corresponding to the label of the atom in the

dictionary Dy contributing to the n-th term in the approximation of the q-th block. The index
`
x,q
n has the equivalent description. The assembling of the approximated blocks gives rise to

the approximated array W′a = Ĵ
Q

q=1W
′kq
q , where Ĵ represents the assembling operation, i.e. the
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operation that retrieves the approximation W′a ∈ R3Lx×Ly of the array W′ ∈ R3Lx×Ly from
the approximation of the blocks in the partition. The approximated array W′a ∈ R3Lx×Ly is
reshaped back into 3 planes, W a(:, :, z) ∈ RLx×Ly , z = 1, . . . , 3, to be converted back to the
approximated RGB intensity image as in (5) and (6).

The approximation of the partition W′
q ∈ RNb×Nb , q = 1, . . . , Q is carried out iteratively as a

two step process which selects i) the atoms in the atomic decomposition (9) and ii) the sequence
in which the blocks in the partition are approximated. The procedure is called Hierarchized
Block Wise (HBW) implementation of greedy pursuit strategies [29,44]. For the selection of the
atoms we apply the Orthogonal Matching Pursuit (OMP) approach [45] dedicated to 2D with
separable dictionaries (OMP2D) [46]. Thus, the whole algorithm is termed HBW-OMP2D [29].
The method iterates as described below.

On setting kq = 0 and R0
q = W′

q ∈ RNb×Nb at iteration kq + 1 the algorithm selects the
indices `x,qkq+1 and `y,qkq+1, as follows:

`x,qkq+1, `
y,q
kq+1 = arg max

n=1,...,Mb
m=1,...,Mb

∣∣∣〈dxn,Rkq
q dym

〉
F

∣∣∣ , q = 1, . . . , Q, (10)

where R
kq
q = W′

q −W′kq
q . The calculation of W′kq

q is realised in order to minimise ‖Rkq
q ‖F ,

which is equivalent to finding the orthogonal projection onto the subspace spanned by the
selected atoms{An = dx

`x,qn
(dy

`y,qn
)T ∈ RNb×Nb}kqn=1. In our implementation, the calculation of the

coefficients cq(n), n = 1, . . . , kq in (9) is realised as

ckq ,q(n) =
〈
Bk
n,W

′kq
q

〉
F
, n = 1, . . . , kq, (11)

where the set {Bkq
n ∈ RNb×Nb}kqn=1 is biorthogonal to the set {An ∈ RNb×Nb}kqn=1 and needs to

be upgraded and updated to account for each newly selected atom. Starting from B1
1 = Q1 =

A1 = dx`x1 (dy
`y1

)> the updating and upgrading is realised through the recursive equations [46,47]:

Bkq+1
n = Bkq

n −B
kq+1
kq+1

〈
Akq+1,B

k
n

〉
F
, n = 1, . . . , kq

B
kq+1
kq+1 = Qkq+1/‖Qkq+1‖2

F, where

Qkq+1 = Akq+1 −
kq∑
n=1

Qn

‖Qn‖2
F

〈
Qn,Akq+1

〉
F
,

(12)

with the additional re-orthogonalisation step

Qkq+1 ← Qkq+1 −
kq∑
n=1

Qn

‖Qn‖2
F

.
〈
Qn,Qkq+1

〉
F
. (13)

As discussed in [29, 44], for `x,qkq+1 and `y,qkq+1, q = 1, . . . , Q the indices resulting from (10), the
block to be approximated in the next iteration corresponds to the value q? such that

q? = arg max
q=1,...,Q

∣∣∣∣〈dx`x,qkq+1
,Rkq

q dy
`y,qkq+1

〉∣∣∣∣ .
The algorithm stops when the required total number of K =

∑Q
q=1 kq atoms has been selected.

This number can be fixed using the SR, which is now calculated as

SR =
Lx · Ly · 3

K
. (14)
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Remark 1. The above described implementation of HBW-OMP2D is very effective in terms of
speed, but demanding in terms of memory (the partial outputs corresponding to all the blocks
in the partition need to be stored at every iteration). An alternative implementation, termed
HBW Self Projected Matching Pursuit (HBW-SPMP) [30, 48], would enable the application of
the identical strategy to much larger images than the ones considered in this work.

4.1 Numerical example II

For this and the next numerical example, we use a mixed dictionary consisting of two classes
of sub-dictionaries of different nature:

I) The trigonometric dictionaries DxC and DxS, defined below,

DxC ={wc(n) cos
π(2i− 1)(n− 1)

2M
, i = 1, . . . , Nb}Mx

n=1

DxS ={ws(n) sin
π(2i− 1)(n)

2M
, i = 1, . . . , Nb}Mx

n=1,

where wc(n) and ws(n), n = 1, . . . ,Mx are normalisation factors.

II) The dictionary DxL, which is constructed by translation of the prototype atoms in Fig. 5.

The mixed dictionary Dx is built as Dx = DxC ∪ DxS ∪ DxL and Dy = Dx.

0 5 10 15 20 25 30
−0.8
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0
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0.6

0.8

1

Figure 5: Prototypes (each in different color) that generate the dictionaries DxL by sequential trans-

lations of one point.

Table 2 shows the improvement in PSNR achieved by atomic decompositions using the
mixed dictionary for SR= 20 and SR= 10.

Notice that while case (v), which does not include any T transformation, gives superior
results than by disregarding entries (c.f. Table 1) when applying any of the transformations (i) –
(iv) the results improve further. The PC transform, however, appears significantly less effective
than the others. In addition to rendering the best results, the dct brings along the additional
advantage of being orthonormal. Consequently, it does not magnify errors at the inversion step.
Because of this, we single out the dct as the most convenient cross color transformation out of
the four considered here.
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Block size 8× 8 16× 16

Transf. PSNR std PSNR std PSNR std PSNR std
(i) dct 40.5 5.0 48.1 4.4 40.8 4.9 48.6 4.2
(ii) YCbCr 40.3 5.0 47.8 4.4 40.6 4.9 48.3 4.2
(iii) PC 39.6 4.8 46.3 4.5 39.9 4.8 46.7 4.5
(iv) Learned 40.3 4.9 47.4 4.3 40.5 4.9 47.8 4.2
(v) No transf. 34.0 5.2 39.1 5.6 34.1 5.2 39.3 5.5

Table 2: Mean value PSNR, with respect to 300 images in the Berkeley data set, produced by
2D atomic decomposition of the arrays W{m} = 1, . . . , 300 in order to obtain SR=20 (2nd and
6th column) and SR=10 (4th and 8th column).

5 Application to image compression

In order achieve compression by filing an atomic decomposition we need to address two issues.
Namely, the quantisation of the coefficients cq(n)n = 1, . . . , kq, q = 1, . . . , Q in (9) and the
storage of the indices (`x,qn , `y,qn ), n = 1, . . . , kq, q = 1, . . . , Q. We tackle the matters by simple
but effective procedures [31].

For q = 1, . . . , Q the absolute value coefficients |cq(n)|, n = 1, . . . , kq are converted to
integers through uniform quantisation as follows

c∆
q (n) =

{
|cq(n)| ≥ θ

0 otherwise.
(15)

The signs of the coefficient are encoded separately as a vector, sq, using a binary alphabet.
Each pair of indices (`x,qn , `y,qn ) corresponding to the atoms in the decompositions of the block
W′

q is mapped into a single index oq(n). The set oq(1), . . . , oq(kq) is sorted in ascending order
oq(n) → õq(n), n = 1, . . . , kq to take the differences δq(n) = õq(n) − õq(n − 1), n = 2, . . . , kq
and construct the string of non-negative numbers õq(1), δq(2), . . . , δq(kq). The order of the set
õq(n), n = 1, . . . , kq induces order in the unsigned coefficients, c∆

q (n) → c̃∆
q (n), and in the

corresponding signs sq(n)→ s̃q(n).
For each q the number 0 is added at the end of the indices õq(n), n = 1, . . . , kq before

concatenation, to be able to separate strings corresponding to different blocks. Each sequence
of strings corresponding to q = 1, . . . , Q is concatenated and encoded using the off-the-shelf
MATLAB function Huff06 [49], which implements Huffman coding.

The compression rate is given in bits-per-pixel (bpp) which is defined as

bpp =
Size of the file in bits

Number of intensity pixels in a single channel
.

At the reconstruction stage the indices (˜̀x,q
n , ˜̀y,q

n ), n = 1 . . . kq are recovered from the string
of differences δq(n)), n = 2, . . . , kq. The signs of the coefficients are read from the binary string.
The quantised unsigned coefficients are read and transformed into real numbers as:

|c̃r
q(n)| = ∆ · c̃∆

q (n) + (θ −∆/2) n = 1 . . . kq.

The codec for reproducing the examples in the next sections has been made available on [50].

11



5.1 Numerical Example III

The relevance to image compression of the achieved sparsity by dct cross color transformation
is illustrated in this section by comparison with results yielded by the compression standards
JPEG, WebP and H.265, firstly on the 15 images in Table 3 and then on the Kodak data set.

The images in Table 3 are typical images, used for compression tests, available in ppm or
png format. The first 9 images are classic test images taken from [51]. The last six images
are portions of 1024 × 1024 × 3 pixels shown in Fig. 6 from very large high resolution images
available on [52].

All the results have been obtained in the MATLAB environment (version R2019a), using a
machine with CPU Intel(R) Core(TM) i7-3520M RAM 8GB CPU @ 2.90GHz. For the image
approximation the HBW-OMP2D method was implemented with a C++ MEX file. All the
channels and all the images were partitioned into blocks of size 16 × 16. The approximation
times to produce the results in Table 4 are displayed in the last column of Table 3.

For realising the comparison we proceed as follows: we set the required value of PSNR
as that produced by JPEG at quality=95 and tune compression with the other methods to
produce the same PSNR. In our codec the tuning is realised by approximating the image up
to PSNRo = 1.025 · PSNR (where PSNR is the targeted quality) and setting the quantisation
parameter ∆ so as to reproduce the targeted value of PSNR.

For compression with JPEG we use the MATLAB imwrite command. The compression
with WebP was realised using the software for Ubuntu distributed on [53]. The compression
with the H.265 encoder was implemented with the ffmpeg tool. All the approaches were tuned
for producing the same value of PSNR as JPEG for quality 95. The Mean Structural SIMilarity
(MSSIM) index [54] was then calculated with the approximation corresponding to those values
of PSNR.

No Image Size time (secs)

1 Lenna 512× 512× 3 1.8
2 Goldhill 576× 720× 3 3.8
3 Barbara 576× 720× 3 3.2
4 Baboon 512× 512× 3 2.7
5 Zelda 576× 784× 3 2.5
6 Sailboat 512× 512× 3 1.8
7 Boy 512× 768× 3 3.8
8 Jupiter 1072× 1376× 3 2.9
9 Saturn 1200× 1488× 3 2.6

10 Building 1024× 1024× 3 9.5
11 Cathedral 1024× 1024× 3 7.6
12 Flower 1024× 1024× 3 3.6
13 Spider-web 1024× 1024× 3 3.8
14 Bridge 1024× 1024× 3 8.5
15 Deer 1024× 1024× 3 5.8

Table 3: Test Images. The last column gives the approximation times to produce the results
in Table 4.
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Figure 6: Illustration of the 1024 × 1024 × 3 panels from the six high resolution test images
(No 10–15) listed in Table 3.
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I dB ssjp sswb ssh65 sssr bjp bwb bh65 bsr

1 35.9 0.98 0.98 0.97 0.97 3.28 2.21 1.90 1.37
2 36.6 0.98 0.98 0.98 0.98 3.63 2.47 3.07 2.01
3 37.2 0.98 0.99 0.99 0.99 3.67 2.80 2.96 1.77
4 28.8 0.97 0.97 0.96 0.96 5.80 4.66 3.41 2.48
5 39.3 0.98 0.98 0.98 0.95 2.61 1.81 1.81 1.07
6 30.9 0.98 0.98 0.95 0.95 4.49 3.21 1.87 1.51
7 32.6 0.97 0.98 0.96 0.97 4.34 3.07 3.52 2.22
8 48.2 0.99 0.99 0.99 0.99 0.60 0.51 0.37 0.20
9 49.0 0.99 0.99 0.99 0.99 0.34 0.36 0.24 0.12

10 37.4 0.99 0.99 0.99 0.99 3.41 2.35 2.73 1.75
11 38.5 0.99 0.99 0.99 0.99 2.84 1.83 1.54 1.20
12 41.5 0.99 0.99 0.99 0.99 1.78 1.08 0.43 0.53
13 45.0 0.99 0.99 0.99 0.99 1.55 1.10 0.82 0.57
14 34.5 0.99 0.99 0.99 0.99 3.57 2.48 1.74 1.48
15 30.9 0.97 0.97 0.96 0.96 3.76 2.59 1.05 0.90

Table 4: Compression rate (bpp) corresponding to JPEG (bjp), WebP (bwb), H.265 (bh65),
and the proposed sparse representation (bsr), for the values of PSNR given in the 2nd column.
The corresponding values of MSSIM are given in in the 3rd to 6th columns. ssjp, sswb, ssh65
and sssr indicate the MSSIM produced by JPEG, WebP, H.265, and the sparse representation
codec respectively.

For the next test we use the Kodak data set,consisting of 24 true color images, all of size
512× 768× 3 (or 768× 512× 3), available on [55]. In this case the approximation time is 4.2
secs per image. The comparison with other methods was conducted as with the previous data
set. The results are shown in Table 5.

It is worth noticing that while for the first set of images the H.265 codec outperforms
both JPEG and WebP methods for most images, in the Kodak data set it becomes the worst
performer. In this case WebP standard yields the second best results.

6 Conclusions

The application of a cross color transformation for enhancing sparsity in the atomic decom-
position of RGB images has been proposed. It was demonstrated that the effect of the trans-
formation is to re-distribute the most significant values in the dwt of the 2D channels. As a
result, when approximating the arrays by disregarding the less significant entries, the quality
of the reconstructed image improves with respect to disabling the cross color transformation.
Four transformations have been considered: (i) a 3 point dct, (ii) the reversible YCbCr color
space transform, (iii) the PC transform, (iv) a transformation learned from an independent set
of images.

The quality of the image approximation was improved further by approximating the trans-
formed arrays by an atomic decomposition using a separable dictionary and the greedy pursuit
strategy HBW-OMP2D. The dct was singled out as the most convenient cross color transfor-
mation for approximating RGB color images in the wavelet domain.
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I dB ssjp sswb ssh65 sssr bjp bwb bh65 bsr

1 40.5 0.99 0.99 0.99 0.99 4.4 3.1 6.9 3.2
2 40.2 0.99 0.99 0.99 0.99 3.0 1.9 3.1 1.6
3 42.2 0.99 0.99 0.99 0.99 2.4 1.6 2.3 1.2
4 40.9 0.99 0.99 0.99 0.99 3.1 2.1 3.5 1.9
5 39.2 0.99 0.99 0.99 0.99 4.6 3.3 5.6 3.1
6 40.7 0.99 0.99 0.99 0.99 3.6 2.6 5.2 2.4
7 41.9 0.99 0.99 0.99 0.99 2.7 1.7 2.5 1.5
8 39.2 0.99 0.99 0.99 0.99 4.7 3.3 6.2 3.2
9 41.7 0.99 0.99 0.99 0.99 2.7 1.8 3.3 1.4

10 41.4 0.99 0.99 0.99 0.99 2.8 2.0 3.2 1.6
11 40.9 0.99 0.99 0.99 0.99 3.4 2.4 4.7 2.3
12 42.2 0.99 0.99 0.99 0.99 2.7 2.0 3.3 1.5
13 38.7 0.99 0.99 0.99 0.99 5.2 3.8 8.2 3.9
14 39.0 0.99 0.99 0.99 0.99 4.1 2.9 5.0 2.5
15 40.8 0.99 0.99 0.99 0.99 2.8 1.9 3.0 1.6
16 42.2 0.99 0.99 0.99 0.99 3.0 2.0 4.2 1.8
17 41.5 0.99 0.99 0.99 0.99 3.0 2.0 3.6 1.7
18 39.0 0.99 0.99 0.99 0.99 4.1 3.0 5.2 2.7
19 41.0 0.99 0.99 0.99 0.99 3.4 2.5 4.7 2.1
20 41.2 0.99 0.99 0.99 0.99 2.4 1.5 2.8 1.4
21 40.5 0.99 0.99 0.99 0.99 3.4 2.6 5.1 2.2
22 39.5 0.99 0.99 0.99 0.99 3.5 2.4 4.1 2.2
23 41.3 0.99 0.99 0.99 0.99 2.4 1.7 1.8 0.9
24 38.0 0.99 0.99 0.99 0.99 3.9 2.7 4.0 2.4

Table 5: Same description as in Table 4 but for the 24 images in Kodak data set.

The approximation approach has been shown to be relevant for image compression. By
means of a simple coding strategy the achieved compression for typical test images consider-
ably improves upon the most commonly used compression standards, namely JPEG and WebP.
The results also overperfom those produced by the H.265 codec.
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