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Abstract—A codec for compression of music signals is pro-
posed. The method belongs to the class of transform lossy
compression. It is conceived to be applied in the high quality
recovery range though. The transformation, endowing the codec
with its distinctive feature, relies on the ability to construct high
quality sparse approximation of music signals. This is achieved
by a redundant trigonometric dictionary and a dedicated pursuit
strategy. The potential of the approach is illustrated by compar-
ison with the OGG Vorbis format, on a sample consisting of
clips of melodic music. The comparison evidences remarkable
improvements in compression performance for the identical
quality of the decompressed signal.
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I. INTRODUCTION

For the most part the techniques for compressing high fi-

delity music have been developed within the lossless compres-

sion framework [1]–[8]. Because lossless music compression

algorithms are reversible, which implies that can reproduce

the original signal when decompressing the file, the efficiency

of those algorithms are compared on the reduction of file

size and speed or the process. Conversely, lossy compression

introduces irreversible loss and should be compared also

taking into account the quality of the decompressed data.

This work focusses on lossy compression of music signals

with high quality recovery. This means that the recovered

signal should be very similar to the original one, with respect

to the Euclidean distance of the data points. In other words,

the recovered signal should yield a high Signal to Noise Ratio

(SNR). The proposed approach is based on the ability to

construct a high quality sparse representation of a piece of

music. The sparsity is achieved by selecting elements from

a redundant trigonometric dictionary, through a dedicated

greedy pursuit methodology which approximates simultane-

ously all the channels of a stereo signal. Pursuit strategies

for approximating multiple signals sharing the same sparsity

structure are refereed in the literature to as several names:

Vector greedy algorithms [9], [10], simultaneous greedy ap-

proximations [10], [11], and multiple measurement vectors

(MMV). [12], [13]. Following previous work [14], [15], we

dedicate greedy methodologies for simultaneous representa-

tion to approximate a partitioned multichannel music signal

subjected to a global constraint on the sparsity.

The use of redundant dictionaries for constructing sparse

representations is known to be a successful approach in a

variety of signal processing applications [16]–[23]. In partic-

ular for compression of facial images [24]–[26]. This paper

extends the range of successful applications by presenting a

number of examples were the proposed dictionary based codec

for compression of music signals yields remarkable results, in

relation to file size and quality of the recovered signal.

A. Paper contributions

The central aim of the paper is to produce a proof of

concept of the proposed codec. The proposal falls within the

usual transform coding scheme. It consists of three main steps:

i) Transformation of the signal.

ii) Quantization of the transformed data.

iii) Bit-stream entropy coding.

However, we move away from the traditional compression

techniques at the very beginning. Instead of considering an

orthogonal transformation, the first step is realized by approx-

imating the signal using a trigonometric redundant dictionary.

In a previous work [15], the dictionary has been proven to

yield stunning sparse approximation of melodic music, if

processed by the adequate greedy strategy. We demonstrate

now that the sparsity renders compression.

The Hierarchized Block Wise Optimized Orthogonal

Matching Pursuit (HBW-OOMP) method in [15] is gen-

eralized here, to consider the simultaneous approximation

of multichannel signals. Within the proposed scheme the

advantage of simultaneous approximation is twofold: a)It

reduces the processing time at the transformation stage and

b)It reduces the number of parameters to be stored, which

improves compression performance.

The success of the codec, designed to achieve high quality

recovery, is illustrated by comparison with the OGG Vorbis

compression format. Accessing the quality of the recovered

signal by the classic SNR, a substantial gain in compression,

for the same quality of the decompressed signal, is demon-

strated on a number of clips of melodic music.

B. Paper Organization

Sec. II introduces the notation and some relevant mathe-

matical background. Sec. III discusses the HBW strategy to

approximate simultaneously a multichannel signal. Sec. IV

describes a simple compression scheme that benefits from

the achieved sparse approximation of the multichannel sig-

nal. Sec. V demonstrates the potential of the technique by

comparison with the OGG format. The final conclusions are

presented in Sec. VI
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II. MATHEMATICAL BACKGROUND AND NOTATIONAL

Throughout the paper R and N stand for the sets of real and

natural numbers, respectively. Low boldface letters are used to

indicate Euclidean vectors and capital boldface letters to indi-

cate matrices. Their corresponding component are represented

using standard mathematical fonts, e.g., f ∈ R
N , N ∈ N is a

vector of components f(i), i = 1, . . . , N and F ∈ R
N×L is

a matrix of real entries F (i, j), i = 1, . . . , N, j = 1, . . . , L.

An L-channel signal is represented as a matrix F ∈ R
N×L

the columns of which are the channels, indicated as vectors

fj ∈ R
N , j = 1, . . . , L. Thus, a single channel reduces to a

vector. A partition of a multichannel signal F ∈ R
N×L is re-

alized by a set of disjoint pieces Fq ∈ R
Nb×L, q = 1, . . . , Q,

which for simplicity are assumed to be all of the same size

and such that QNb = N , i.e., for each channel it holds that

fj = Ĵ
Q

q=1fq,j , where the concatenation operation Ĵ is defined

as follows: fj is a vector in R
QNb having components fj(i) =

fq,j(i−(q−1)Nb), i = (q−1)Nb+1, . . . , qNb, q = 1, . . . , Q.

In the adopted notation fj(i) can also be indicated as F (i, j)
and fq,j(i) as Fq(i, j). Hence

‖F‖2F =

Q
∑

q=1

‖Fq‖2F ,

where each Fq is a matrix consisting of the channels fq,j ∈
R

Nb , j = 1, . . . , L, as columns and ‖ · ‖F indicates the

Frobenius norm. Accordingly,

‖Fq‖2F =

L
∑

j=1

‖fq,j‖2,

where ‖.‖ indicates the Euclidean norm induced by the

Euclidean inner product 〈·, ·〉.
Definition 1. A dictionary for R

Nb is an over-complete set

of normalized to unity elements D = {dn ∈ R
Nb ; ‖dn‖ =

1}Mn=1, which are called atoms.

Approximation assumption: Given a dictionary D and a

multichannel signal partitioned into Q blocks fq,j ∈ R
Nb , j =

1, . . . , L, q = 1, . . . , Q, as described above, the kq-term

approximation of each block is assumed to be of the form

f
kq

q,j =

kq
∑

n=1

c
kq

q,j(n)dℓqn , j = 1, . . . , L, q = 1, . . . , Q, (1)

where the atoms dℓqn , n = 1, . . . , kq are the same for all the

channels corresponding to a particular block q.

Before discussing how to select the atoms in (1) it is con-

venient to review some properties of an orthogonal projector.

Let’s start by recalling its definition.

Definition 2. An operator P̂V
q

kq
is an orthogonal projection

operation onto V
q
kq
⊂ R

Nb if and only if:

a) P̂V
k
q
q

is idempotent, i.e., P̂V
k
q
q
P̂V

k
q
q
= P̂V

k
q
q

.

b) P̂V
k
q
q
g = g if g ∈ Vkq

q
and P̂V

k
q
q
g⊥ = 0 if g⊥ ∈ V

⊥
kq
q
,

with V
⊥
kq
q

indicating the orthogonal complement of Vkq
q

in R
Nb .

The following properties will be used in the proofs of

subsequente theorems.

i) An orthogonal projector operator P̂V
k
q
q

is hermitian, i.e.

for all h and g in R
Nb it is true that 〈h, P̂V

q

kq
g〉 =

〈P̂V
q

kq
h,g〉.

ii) If V
q
kq+1 is constructed as V

q
kq+1 = V

q
kq

+ dℓq
kq+1

, for

all h ∈ R
Nb it holds that

P̂V
q

kq+1
h = P̂V

q

kq
h+w

q
kq+1

〈wq
kq+1,h〉

‖wq
kq+1‖2

,

with w
q
kq+1 = dℓq

kq+1
− P̂V

q

kq
dℓq

kq+1
.

Theorem 1. Let Fq be a Nb×L matrix the columns of which

are the L signals fq,j ∈ R
N
b , j = 1, . . . , L and let F

kq
q be the

matrix with the corresponding kq-term approximations f
kq

q,j ∈
Vkq

q
, j = 1, . . . , L. For the error ‖Fq−Fkq

q ‖2F to be minimum

the kq-term approximations must satisfy: f
kq

q,j = P̂V
k
q
q
fq,j , j =

1, . . . , L.

Proof. ‖Fq − F
kq
q ‖2F can be expressed as

‖Fq − Fkq
q ‖2F =

L
∑

j=1

〈fq,j − f
kq

q,j , fq,j − f
kq

q,j〉

=

L
∑

j=1

‖fq,j‖2 − 2〈fq,j , fkq

q,j〉+ ‖f
kq

q,j‖2.(2)

Since f
kq

q,j is an element of V
q
kq

we can write it as f
kq

q,j =

P̂V
q

kq
fq,j + gq,j for some gq,j ∈ V

q
kq

. The corresponding

replacements in (2), and the fact that gq,j = P̂V
q

kq
gq,j and

P̂V
q

kq
is idempotent and hermitian, lead to the expression

‖Fq − Fkq
q ‖2F =

L
∑

j=1

‖fq,j‖2 − 〈fq,j , P̂Vkq
fq,j〉+ ‖gq,j‖2, (3)

from where it follows that ‖Fq−Fkq
q ‖2F is minimum if gq,j =

0, j = 1, . . . , L i.e. f
kq

q,j = P̂Vkq
fq,j , j = 1, . . . , L.

Corollary 1. The statement of Theorem 1 also minimizes the

norm of the total residual RK = F − FK in approximating

the whole multichannel signal, with FK = Ĵ
Q

q=1F
kq
q and K =

∑Q
q=1 kq .

Proof. It readily follows by the a definition of the adopted

disjoint partition:

‖RK‖2F =

Q
∑

q=1

‖Fq − Fkq
q ‖2F

is obviously minimum if each ‖Fq−F
kq
q ‖2F is minimum.

Assuming, for the moment, that the sets of indices Γq =

{ℓqn}
kq

n=1 labeling the atoms in (1) are known, we recall at

this point an effective construction of the required orthogonal

projector for optimizing the approximation. Such a projection

is given in terms of biorthogonal vectors as follows:

P̂V
q

k
fq,j =

kq
∑

n=1

dℓqn〈bkq,q
n , fq,j〉 =

kq
∑

n=1

c
kq

q,j(n)dℓqn . (4)
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For a fixed q the vectors b
kq,q
n , n = 1, . . . , kq are biorthogonal

to the selected atoms dℓqn , n = 1, . . . , kq and span the

identical subspace, i.e.,

V
q
kq

= span{bkq,q
n }kq

n=1 = span{dq
ℓn
}kq

n=1.

Such vectors can be adaptively constructed, from b
1,q
1 =

w
q
1 = d

q
ℓ1

, through the recursion formula [27]:

bkq+1,q
n = bkq ,q

n − b
kq+1,q
kq+1 〈d

q
ℓkq+1

,bkq,q
n 〉, n = 1, . . . , kq,

b
kq+1,q
kq+1 = w

q
kq+1/‖w

q
kq+1‖2,

(5)

with

w
q
kq+1 = d

q
ℓkq+1

−
kq
∑

n=1

wq
n

‖wq
n‖2
〈wq

n,d
q
ℓkq+1

〉. (6)

For numerical accuracy in the construction of the orthogonal

set wq
n, n = 1, . . . , kq + 1 at least one re-orthogonalization

step is usually needed. This implies to recalculate the vectors

as

w
q
kq+1 ← w

q
kq+1 −

kq
∑

n=1

wq
n

‖wq
n‖2
〈wq

n,w
q
kq+1〉. (7)

The alternative representation of P̂V
q

kq
, in terms of vectors

wq
n, n = 1, . . . , kq, gives the decompositions:

P̂V
q

kq
fq,j =

kq
∑

n=1

wq
n

〈wq
n, fq,j〉
‖wq

n‖2
, j = 1, . . . , L, q = 1, . . . , Q.

(8)

While these decompositions are not the representations of

interest (c.f. (1)) they play a central role in the derivations

of the next section.

III. MULTICHANNEL HBW STRATEGY

The HBW version of pursuit strategies [14], [15] is a dedi-

cated implementation of those techniques, specially designed

for approximating a signal partition subjected to a global

constraint on sparsity. The approach operates by raking the

partition units for their sequential stepwise approximation. In

this section we extend the HBW method to consider the case

of a multichannel signal, within the approximation assumption

specified in Sec. II.

Theorem 2. Considerer that, for each block q, the kq-term

atomic decompositions (1) fulfilling that f
kq

q,j = P̂V
q

kq
fq,j

are known, with V
q
kq

= span{dℓqn}
kq

n=1. Let the indices

ℓqkq+1 /∈ {ℓqn}
kq

n=1 be selected, for each q-value, by the same

criterion as the one used to choose the atoms in (1). In order

to minimize the square norm of the total residual RK+1, with

K =
∑Q

q=1 kq, the atomic decomposition to be upgraded at

iteration K + 1 should correspond to the block q⋆ such that

q⋆ = argmax
q=1,...,Q

∑L
j=1 |〈w

q
kq+1, fq,j〉|2

‖wq
kq+1‖2

, (9)

with w
q
1 = dℓq1

and w
q
kq+1 = dℓq

kq+1
− P̂V

q

kq
dℓq

kq+1
.

Proof. Since at iteration K + 1 the atomic decomposition of

only one block is upgraded by one atom, the total residue at

that iteration is constructed as

RK+1 = Ĵ
Q
p=1
p6=q

Rkp
p Ĵ Rkq+1

q .

Then,

‖RK+1‖2F =

Q
∑

p=1
p6=q

‖Rkp
p ‖2F + ‖Rkq+1

q ‖2F ,

so that ‖RK+1‖ is minimized by the minimum value of

‖Rkq+1
q ‖2F . Moreover, by definition ‖Rkq+1

q ‖2F = ‖Fq −
F

kq+1
q ‖2F and, from (2) and the fact that f

kq+1
q,j = P̂V

q

kq+1
fq,j ,

we can write:

‖Rkq+1
q ‖2F =

L
∑

j=1

‖fq,j‖2 − ‖P̂V
q

kq+1
fq,j‖2. (10)

Then, ‖Rkq+1
q ‖2F is minimum if

∑L
j=1 ‖P̂V

q

kq+1
fq,j‖2 is max-

imum. Applying the property ii) of an orthogonal projector

listed in Sec. II we have:

L
∑

j=1

‖P̂V
q

kq+1
fq,j‖2 =

L
∑

j=1

‖P̂V
q

kq
fq,j‖2 +

L
∑

j=1

|〈wq
kq+1, fq,j〉|2

‖wq
kq+1‖2

,

with w
q
kq+1 = dℓq

kq+1
− P̂V

q

kq
dℓq

kq+1
. Because P̂V

q

kq
fq,j is

fixed at iteration K +1, we are in a position to conclude that

‖RK+1‖2F is minimized by upgrading the atomic decompo-

sition of the block q⋆ satisfying (9).

Theorem (2) gives the HBW prescription optimizing the

raking of the blocks in a multichannel signal partition, for

their sequential stepwise approximation. This is irrespective

of what the criterion for choosing the atoms for the approxi-

mation is. The method as a whole depends on that criterion,

of course. One can use for example an extension of the

Orthogonal Matching Pursuit (OMP) criterion, which when

applied to multichannel signals has been termed simultaneous

OMP in [11]. According to this criterion the indices of the

atoms in the approximation of each block-q are such that

ℓqkq+1 = argmax
n=1,...,M

L
∑

j=1

|〈dn, r
kq

q,j〉|, (11)

where r0q,j = fq,j and r
kq

q,j = fq,j − P̂V
q

kq
fq,j . Alternatively,

the extension of OMP to multichannels which is known as

MMV-OMP [12], [13] selects the index fulfilling

ℓqkq+1 = argmax
n=1,...,M

L
∑

j=1

|〈dn, r
kq

q,j〉|2. (12)

The optimization of the OMP criterion to select the atoms

minimizing the norm of the residual error for each block

goes with several names, according to the context were it

was derived and the actual implementation. In one of the

earliest references [28] is called Orthogonal Least Square. In

others is called Order Recursive Matching Pursuit (ORMP)

and in particular for multichannel signals MMV-ORMP [12].

The implementation we adopt here is termed Optimized

Orthogonal Matching Pursuit (OOMP) [27] and will be termed
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OOMPMl for multichannel signals. The approach selects the

atoms ℓqkq+1, for the approximation of block q, in other to

minimize the norm of the residual error ‖Fq − F
kq+1
q ‖ for

that block. Those atoms correspond to the indices selected

as:

ℓqkq+1 = argmax
n=1,...,M

n/∈Γq

∑L
j=1 |〈dn, r

kq

q,j〉|2

1−
∑kq

i=1 |〈dn, w̃
q
i 〉|2

, q = 1, . . . , Q,

(13)

where Γq = {ℓqn}
kq

n=1, r
kq

q,j = fq,j− P̂V
q

kq
fq,j , with r0q,j = fq,j ,

and w̃
q
i =

w
q
i

‖wq
i ‖

, with w
q
i , i = 1, . . . , kq as in (6). The proof

follows as in Theorem 2, but fixing the value of q and taking

the maximization over the index.

As will be discussed in the next section, the used of trigono-

metric dictionaries reduces the complexity of the calculations

in (11), (12), and (13).

The particularity of the OOMPMl implementation being

that the coefficients of the atomic decomposition (1) are

calculated using vectors (5) which are adaptively upgraded

together with the selection of each new atom. For the qth-

block the coefficients in the atomic decompositions (1) are

computed as:

c
kq

q,j(n) = 〈bkq ,q
n , fq,j〉, n = 1, . . . , kq, , j = 1, . . . , L, (14)

with b
kq ,q
n as in (5). Thus, when the channels have similar

sparsity structure by approximating all of them simultaneously

the complexity is reduced.

The HBW-OMPMl/OOMPMl approach is implemented by

the following steps:

1) Initialize the algorithm by selecting the ‘potential’ first

atom for the atomic decomposition of every block q,

according to criterion (12) or (13). For q = 1, . . . , Q
set: kq = 1,wq

1 = b
1,q
1 = dℓq1

.
2) Use criterion (9) for selecting the block q⋆ to upgrade

the atomic decomposition by incorporating the atom

corresponding to the index ℓq
⋆

kq⋆
. If kq⋆ > 1 upgrade

vectors (5) for block q⋆.

3) Increase kq⋆ ← kq⋆ + 1 and select a new potential atom

for the atomic decomposition of block q⋆, using the same

criterion as in 1). Compute the corresponding w
q⋆

kq⋆
(c.f.

(6)).

4) Check if, for a given K , the condition
∑Q

q=1 kq = K+1
has been met. Otherwise repeat steps 2) - 4).

5) For each block, q = 1, . . . , Q, calculate the coefficients

in (1) as in (14).

A. Implementation details with Trigonometric Dictionaries

In [15] we illustrate the clear advantage of approximating

music using a mixed dictionary with components Dc and Ds

as below

• Dc = { 1
wc(n) cos(π(2i−1)(n−1)

2M ), i = 1, . . . , Nb}Mn=1.

• Ds = { 1
ws(n) sin(π(2i−1)n

2M ), i = 1, . . . , Nb}Mn=1,

where wc(n) and ws(n), n = 1, . . . ,M are normalization

factors as given by

wc(n) =







√
Nb if n = 1,

√

Nb

2 +
sin(π(n−1)

M
) sin(

2π(n−1)Nb
M

)

2(1−cos( 2π(n−1)
M

))
if n 6= 1.

ws(n) =







√
Nb if n = 1,

√

Nb

2 −
sin(πn

M
) sin(

2πnNb
M

)

2(1−cos( 2πn
M

))
if n 6= 1.

Fixing M = 2Nb a dictionary redundancy four is constructed

as D = Dc ∪ Ds. In addition to yielding highly sparse

representation of melodic music, this trigonometric dictionary

leaves room for reduction in the computational complexity of

the algorithms and also in the storage demands. As discussed

below, savings are made possible in an straightforward manner

via the Fast Fourier Transform (FFT).

Given a vector y ∈ R
M we define

F(y, n,M) =

M
∑

j=1

y(j)eı 2π
(n−1)(j−1)

M , n = 1, . . . ,M.

(15)

When M = Nb (15) is the Discrete Fourier Transform of

vector y ∈ R
Nb , which can be evaluated using FFT. If M >

Nb we can still calculate (15) via FFT by padding with (M−
Nb) zeros the vector y. Accordingly, (15) is a useful tool for

calculating inner products with the atoms in dictionaries Dc

and Ds. For n = 1, . . . ,M it holds that

Nb
∑

j=1

cos
π(2j − 1)(n− 1)

2M
y(j) = Re

(

e− ı π(n−1)
2M F(y, n, 2M)

)

(16)

and for n = 2, . . . ,M + 1

Nb
∑

j=1

sin
π(2j − 1)(n− 1)

2M
y(j) = Im

(

e− ı π(n−1)
2M F(y, n, 2M)

)

,

(17)

where Re(z) indicates the real part of z and Im(z) its

imaginary part. The assistance of the FFT for performing

the inner products (16) and (17) reduces the complexity in

calculating the maximizing function in (12), (which is also

the numerator in (13)) from 2MNb to 2M(log2 2M + 1).

Storing the sums S
kq−1
n =

∑kq−1
i=1 |〈dn, w̃

q
i 〉|2, n = 1 . . . ,M

the denominator in the right hand side of (13) involves the

calculation of |〈dn, w̃
q
kq
〉|2, n = 1 . . . ,M , which can also be

computed via FFT. Hence the complexity for the calculation

of the denominator in (13) is of the same order as that for the

calculation of the numerator. Criterion (13) in general yields

higher sparsity, hence it reduces the cost in calculating vectors

(5).

The MATLAB function implementing the HBW-OOMPMl

approach, named HBW-OOMPMlTrgFFT when dedicated to

the above trigonometric dictionary, has been made available

on [29].

IV. A SIMPLE CODING STRATEGY

Previously to entropy encoding the coefficients resulting

from approximating a signal by partitioning, the real numbers

need to be converted into integers. This operation is known as

quantization. For the numerical example of Sec. V we adopt a

simple uniform quantization technique: The absolute value co-

efficients |cq,j(n)|, n = 1 . . . , kq, q = 1, . . . , Q, j = 1, . . . , L
are converted to integers as follows:

c∆q,j(n) = ⌊
|cq,j(n)|

∆
+

1

2
⌋, (18)
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where ⌊x⌋ indicates the largest integer number smaller or

equal to x and ∆ is the quantization parameter. The signs

of the coefficients, represented as sq,j , q = 1, . . . , Q, j =
1, . . . , L, are encoded separately using a binary alphabet. As

for the indices of the atoms, which are common to the atomic

decompositions of all the channels, they are firstly sorted in

ascending order ℓqi → ℓ̃qi , i = 1, . . . , kq , which guarantees

that, for each q value, ℓ̃qi < ℓ̃qi+1, i = 1, . . . , kq − 1. This

order of the indices induces an order in the coefficients,

c∆q,j → c̃∆q,j and in the corresponding signs sq,j → s̃q,j . The

advantage introduced by the ascending order of the indices

is that they can be stored as smaller positive numbers by

taking differences between two consecutive values. Indeed,

by defining δqi = ℓ̃qi − ℓ̃qi−1, i = 2, . . . , kq the follow

string stores the indices for block q with unique recovery

ℓ̃q1, δ
q
2, . . . , δ

q
kq

. The number ‘0’ is then used to separate the

string corresponding to different blocks and entropy code a

long string, stind, which is built as

stind = [ℓ̃11, . . . , δ
1
k1
, 0, · · · , 0, · · · , ℓ̃kQ

1 , . . . , δQkQ
]. (19)

The corresponding quantized magnitude of the coefficients

of each channel are concatenated in the L strings stjcf , j =
1, . . . , L as follows:

stjcf = [c̃∆1,j(1), . . . , c̃
∆
1,j(k1), · · · , c̃∆kQ,j(1), . . . , c̃

∆
kQ,j(kQ)].

(20)

Using ‘0’ to store a positive sign and ‘1’ to store negative

one, the signs are placed in the L strings, stjsg, j = 1, . . . , L
as

stjsg = [s̃1,j(1), . . . , s̃1,j(k1), · · · , s̃kQ,j(1), . . . , s̃kQ,j(kQ)].
(21)

The next encoding/decoding scheme summarizes the

above described procedure.

Encoding

• Given a partition Fq ∈ R
Nb×L, q = 1, . . . , Q of

a multichannel signal, where for each q the channels

fq,j ∈ R
Nb , j = 1, . . . , L are placed as columns of Fq,

approximate simultaneously all the channels through the

HBW-OOMPMlTrgFFT approach using K =
∑Q

q=1 kq
atoms to obtain:

f
kq

q,j =

kq
∑

n=1

cq,j(n)dℓn , j = 1, . . . , L, q = 1 . . . , Q.

(22)

• Quantize, as in (18), the absolute vale coefficients in the

above equation to obtain c∆q,j(n), n = 1, . . . , kq, j =
1, . . . , L, q = 1, . . . , Q.

• For each q, sort the indices ℓq1, . . . , ℓkq
in ascending oder

to have a new order ℓ̃q1, . . . , ℓ̃kq
and the re-ordered sets

s̃q,j(1), . . . , s̃q,j(kq), and c̃q,j(1), . . . , c̃q,j(kq), to create

the strings: stind, as in (19), and stjcf , and stjsg, j =
1, . . . , L as in (20) and (21), respectively. All these

strings are encoded, separately, using arithmetic coding.

Decoding

• Reverse the arithmetic coding to recover strings

stind, st
j
cf , st

j
sg, j = 1, . . . , L.

• Invert the quantization step as |c̃rq,j(n)| = ∆c̃∆q,j(n).

• Recover the partition of each channel through the liner

combination

f
r,kq

q,j =

kq
∑

n=1

s̃q,j(n)|c̃rq,j(n)|dℓ̃qn
.

• Assemble the recovered signal for each channel as

f rj = Ĵ
Q

q=1f
r,kq

q,j , j = 1, . . . , L

As already mentioned, the quality of the recovered signal is

assessed by the SNR measure, which is calculated as

SNR = log10
‖F‖2F

‖F− Fr‖2F
= 10 log10

∑L
j=1 ‖fj‖2

∑L
j=1 ‖fj − f rj‖2

.

V. NUMERICAL EXAMPLE

This section is dedicated to illustrate the potential of the

proposed codec for compressing melodic music with high

quality recovery. The comparison with the state of the art

is realized with respect to the OGG format [30]. The reasons

being: a) OGG is free licence. b) It is known to recover a

signal of audible quality comparable to MP3 (superior for

some opinions) from a file of the same size. c)For a high

quality setting (e.g. more than 90%) OGG produces a high

SNR, which implies that the recovered signal is close to the

original signal in the sense of the usual Euclidean distance.

The test clips, originally in WAV format and all sampled

at 44100 Hz, are listed in Table I. All the clips are stereo,

with two channels. The SNR, in all the cases, is fixed by

setting the OGG quality 90%. For comparison purposes the

Trigonometric Dictionary Codec (TDC) is tuned to reproduce

the same SNR in each case. The partition unit is fixed as

Nb = 1024 sample points. The approximation routine is set to

produce a SNR a few dBs higher than the required one and the

quantization parameter ∆ is tuned to match the OGG’s SNR.

The file sizes are shown in Table I. The sizes corresponding

to the TDC are obtained using the Arith06 MATLAB function

at the entropy coding step. The function is available on [31].

Figure 1 shows the comparison bars in kbps (kilobit per

sec) of the compression rate for the clips of Table I and the

corresponding SNR values.

1 2 3 4 5 6 7 8 9 10 11 12 13
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Fig. 1. Comparison bars, OGG vs TDC for the clips of Table 1. The vertical
axis corresponds to the compression rate in kbps.
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Clip SNR OGG TDC

C1 Electric Guitar 32.10dB 212KB 72KB

C2 Harmonics Guitar 35.30dB 359KB 126KB

C3 Classic Guitar 35.84dB 723KB 89KB

C4 Pop Piano Chord 32.53dB 261KB 55KB

C5 Cathedral Organ 34.38dB 537KB 110KB

C6 Orchestra Horns 39.07dB 629KB 122KB

C7 Ascending Jazz 33.38dB 102KB 28KB

C8 Orchestrated 35.56dB 205KB 31KB

C9 Classic Orchestra 34.63dB 125KB 33KB

C10 Trumpet Sax 34.25dB 78KB 32KB

C11 Orchestra Entrance 34.21dB 74KB 19KB

C12 Piazzola (Orches.) 31.90dB 205KB 58KB

C13 Chopin (Piano) 35.44dB 414KB 58KB

TABLE I
COMPARISON OF FILE SIZES (IN KILOBYTES) COMPRESSING THE CLIPS

TO PRODUCE THE SAME SNR. THE SNR VALUES ARISE BY SETTING 90%
QUALITY FOR THE OGG COMPRESSION. MOST OF THE CLIPS ARE FROM

free-loops.com. C3 AND C9 AND C13 ARE FROM SAMPLE WAV
FILES ON onclassical.com

.

VI. CONCLUSIONS

The proof of concept of the proposed TDC has been

presented. Comparisons with the OGG Vorbis standard at 90%
quality demonstrate the potential of the proposed codec: For

all the short clips of melodic music that have been tested (in

addition to those in Table I) the TDC achieves remarkable

reduction in the file size for the identical quality.

Because this work focusses on assessing compression vs

quality, the pursuit technique which has been applied at the

approximation stage aims at producing high sparsity. At the

entropy coding step compression performance was prioritized

over speed. In addition to Arith06, the arithmetic encoder

Arith07 and Huffman encoder Huff06, implemented by the

MATLAB functions available on [31], have been tested. All

these entropy coding techniques produce similar outputs.

Note: The MATLAB functions for implementing the TDC

and running the numerical examples of Sec. V, can be

downloaded on [29].
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