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Abstract

Algorithms and MATLAB implementation facilitating the construction of
wavelet dictionaries for ECG modeling are presented. The model enables the
representation of an ECG record as a linear combination of fewer elementary
components than those required by a wavelet basis. That result was demon-
strated in a previous work on the MIT-BIH Arrhythmia data set. This paper
complements the previous one. It produces the technical details of the methods
and algorithms which are implemented by the software for constructing different
families of wavelet dictionaries. The implementation allows for straightforward
further extensions to include additional wavelet families.
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1. Introduction

The electrocardiogram (ECG) is a routine test for clinical medicine. It plays
a crucial role in the diagnosis of a broad range of anomalies in the human heart;
from arrythmias to myocardial infarction.

The widely available digital ECG data has facilitated the development of
algorithms for ECG processing and interpretation. In particular, the literature
for computerized arrhythmia detection and classification is extensive. Useful
review matterial [21, 22] can help with the introduction to state of the art
techniques, which nonetheless keeps growing [1, 5, 7, 20, 26].

A common first step in ECG modeling consists in reducing the dimension-
ality of the signal. This entails to represent the informational content of the
record by means of significantly fewer parameters than the number of samples
in the digital ECG. When the aim is to reproduce the original signal at low level
distortion, the step is frequently realized through transformations such as the
Wavelet Transform and the Discrete Cosine Transform.

In the last few years alternative approaches, falling within the category of
sparse representation of ECG signals, have been considered. Within the sparse
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representation framework, an ECG record is represented as a linear combination
of elementary components, called atoms, which are selected from a redundant
set, called a dictionary. The success of the methods developed within this frame-
work depends on both, the selection technique and the proposed dictionary. The
selection techniques which are widely applied for sparse representation of gen-
eral signals are either greedy pursuit strategies [24, 27, 30], or strategies based
on minimization of the 1-norm as a cost function [10]. Suitable dictionaries
depend on the class of signals being processed. These can be designed at hoc
or be learned from training data. Sparse representation of ECG signals has
been tackled by both these approaches, e.g. [2] learns dictionaries using some
part of the records for ECG compression and [28] uses Gabor dictionaries for
structuring features for classification.

In a recent publication [29] we have shown that wavelet dictionaries, de-
rived from known wavelet families, are suitable for representing an ECG record
as a linear combination of fewer elementary components than those required
by a wavelet basis. The model was shown to be successful for dimensional-
ity reduction and lossy compression. As far as compression is concerned the
method advanced in [29] produces compression results improving upon previ-
ously reported benchmarks [19, 23, 25, 34] for the MIT-BIH Arrhythmia data
set without pre-processing. With regard to dimensionality reduction, wavelet
dictionaries considerably improve upon the results achieved with the wavelet
basis of the same family [29, 32]. This result motivated the present Commu-
nication. While in [29] the dictionaries have been used to demonstrate their
suitability for dimensionality reduction of ECG signals at low level distortion,
the details of their numerical construction were not given. This paper comple-
ments the previous work by presenting the algorithms for building dictionaries
from the following mother wavelet prototypes:

1) Chui-Wang linear spline wavelet [11]

2) Chui-Wang quadratic spline wavelet [11]

3) Chui-Wang cubic spline wavelet [11]

4) primal CDF97 wavelet [6]

5) dual CDF97 wavelet [6]

6) primal CDF53 wavelet [6]

7) linear spline wavelet with short support and 2 vanishing moments [9, 18]

8) quadratic spline wavelet with short support and 3 vanishing moments
[9, 18]

9) cubic spline wavelet with short support and 4 vanishing moments [9, 18]

10) Daubechies wavelet with 3 vanishing moments [16]

11) Daubechies wavelet with 4 vanishing moments [16]

12) Daubechies wavelet with 5 vanishing moments [16]

13) symlet with 3 vanishing moments [17]

14) symlet with 4 vanishing moments [17]

15) symlet with 5 vanishing moments [17]

16) coiflet with 2 vanishing moments and support of length 6 which is the
most regular [17]
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17) coiflet with 3 vanishing moments and support of length 8 [17]

The method proposed in [29] for modeling a given ECG signal proceeds as
follows. Assuming that the signal is given as an N -dimensional array, this array
is partitioned into Q cells f c{q}, q = 1, . . . , Q. Thus, each cell f c{q} is an Nb-
dimensional vector, which is modeled by an atomic decomposition of the form

fa{q} =

k(q)∑
n=1

c{q}(n)d`{q}(n). (1)

For each cell q, the atoms d`{q}(n)
, n = 1, . . . , k(q) are selected from a dictionary

through the greedy Optimized Orthogonal Matching Pursuit (OOMP) algorithm
[30, 31]. The array `{q} is a vector whose components `{q}(n), n = 1, . . . , k(q)
contain the indices of the selected atoms for decomposing the q-th cell in the
signal partition. The OOMP method, for selecting these indices and computing
the corresponding coefficients c{q}, n = 1, . . . , k(q) in (1), is fully implemented
by the OOMP function included as a tool of the software.

Each of the proposed dictionaries consists of two components. One of the
components contains a few elements, say Mc, from a discrete cosine basis. This
component of the dictionary allows for the fact that ECG signals are normally
superimposed to a smooth background. It is given as a Nb×Mc matrix DC . The
other component is the wavelet-based dictionary, which is given as a Nb ×Mw

matrix DW . Thus, the whole dictionary D is an Nb×(Mc+Mw) matrix obtained
by the horizontal concatenation of DC and DW . The next section is dedicated
to the construction of DW .

The paper is organized as follows. Sec. 2 gives all the details for the construc-
tion of different wavelet prototypes and the concomitant wavelet dictionaries
generated by those prototypes. Secs 3, 4 and 5 deliver details and examples of
the use of the MATLAB software for modeling ECG signals within the proposed
framework.

The software has been made available on a dedicated webpage [15]. The
implementation allows for straightforward further extension of the options for
wavelet types.

2. Method for construction of wavelet dictionaries

In this section we produce all the pseudo-codes for the construction of
wavelets dictionaries, which can be used to achieve the model of every seg-
ment in a signal partition. As already mentioned, each dictionary is obtained
by taking the prototypes from a wavelet basis and translating them within a
shorter step than that corresponding to the wavelet basis.

Throughout the paper we adopt the following notation. Boldface fonts are
used to indicate Euclidean vectors and matrices. Standard mathematical fonts
are used to indicate components, e.g., d ∈ RN is a vector of N -components
d(i) ∈ R, i = 1, . . . , N and D ∈ RN×M is a matrix of elements D(i, j), i =
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1 . . . , N, j = 1, . . . ,M . The symbol L2(R) denotes the space of square integrable
functions.

Wavelets are usually constructed starting from a multiresolution analysis,
which is a sequence {Vj}∞j=j0

of closed subspaces of the space L2 (R) which are

nested and their union is dense in L2 (R), i.e.,

Vj ⊂ Vj+1 ∀ j ≥ j0,
∞⋃

j=j0

Vj = L2 (R) . (2)

We assume that there exists a function φ ∈ L2 (R) such that for j ≥ j0 functions

φj,k (x) = 2j/2φ
(
2jx− k

)
, k ∈ Z, (3)

form uniformly stable bases of the spaces Vj , i.e., the bases are Riesz bases with
bounds independent of the level j, see e.g. [8]. The functions φj,k are called
scaling functions and the function φ is called a generator of scaling functions.
Next we present a method for the actual construction of the scaling functions.

2.1. Generation of scaling functions

We assume that φ has a compact support [0,K] for some K ∈ N. From the
nestedness of the multiresolution spaces Vj , it follows that there exists a scaling
filter h = (h(1), . . . , h(K + 1)) such that

φ (x) =

K+1∑
k=1

h (k)φ (2x+ 1− k) ∀ x ∈ R. (4)

If
∫K

0
φ (x) dx = c 6= 0 then, integrating (4), we obtain

c =

K+1∑
k=1

h (k)
c

2
(5)

which implies that h has to be normalized such that

K+1∑
k=1

h (k) = 2. (6)

The scaling equation (4) enables computing values of the scaling function
φ at points k/2u for k = 0, . . . ,K2u, u ∈ N. First we compute values of φ at
integer points. Since suppφ = [0,K], we have φ (k) = 0 for k 6= (0,K). Let us
define a vector

Φ = (φ (0) , . . . , φ (K − 1))
T
, (7)

where the (.)T indicates the transpose operation. Substituting x = 0, . . . ,K−1,
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into (4), we obtain

Φ (i) = φ (i− 1) =

K+1∑
k=1

h (k)φ (2i− 1− k) (8)

=

2i−K−1∑
j=2i−1

h (2i− j)φ (j − 1) =

2i−K−1∑
j=2i−1

h (2i− j) Φ (j) .

We set h(k) = 0 for k < 1 and k > K + 1 and define a matrix A by

A (i, j) = h (2i− j) , i, j = 1, . . . ,K. (9)

Then, (8) is equivalent to
Φ = AΦ. (10)

This means that Φ is an eigenvector corresponding to the eigenvalue 1 of the
matrix A. If the multiplicity of this eigenvalue is 1, then Φ is given uniquely
up to a multiplication by a constant. Our aim is to compute a vector phi such
that

phi (m) = φ

(
m− 1

2u

)
, m = 1, . . . ,K 2u + 1, (11)

for a chosen level u ∈ N. From (7) and (11) we have

phi (2u (l − 1) + 1) = φ (l − 1) = Φ (l) , l = 1, . . . ,K. (12)

We compute values of φ at points l/2. Note that for l even we already know
these values. Using (4) and (12) we obtain

phi
(
l2u−1 + 1

)
= φ

(
l

2

)
=

K+1∑
k=1

h (k)φ (l + 1− k) (13)

=

K+1∑
k=1

h (k) phi ((l + 1− k) 2u + 1)

for l = 1, 3, . . . , 2N − 1. Similarly, we compute values of φ at points l/4, and
thus we continue until we determine values at points l/2u. More precisely, for
i = 1, . . . , u we assume that we know values of φ at l/2i−1, l = 0, . . . ,K2i−1 +1,
and we compute the values

phi (m) = φ (x) , m = x2u + 1, x = l/2i−1 + 1/2i. (14)
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Using (4) we obtain

phi (m) = φ (x) =

K+1∑
k=1

h (k)φ (2x+ 1− k) (15)

=

K+1∑
k=1

h (k) phi ((2x+ 1− k) 2u + 1) .

Remark 1. Some scaling functions such as spline scaling functions are known
in an explicit form and their values can be evaluated directly. However, an
advantage of our approach is that it is more general and can be used for a large
class of wavelet families.

2.2. Construction of wavelet generators from scaling functions

Let Wj be complement spaces such that Vj+1 = Vj ⊕Wj , where ⊕ denotes
a direct sum. Wavelet functions ψj,k are constructed in the form:

ψj,k (x) = 2j/2ψ
(
2jx− k

)
, k ∈ Z, (16)

to be a basis for Wj and such that

B = {φj0,k, k ∈ Z} ∪ {ψj,k, k ∈ Z, j ≥ j0} (17)

called a wavelet basis, is a Riesz basis of the space L2 (R).
Since Wj ⊂ Vj+1 there exists a vector g = (g(1), . . . , g(M + 1)) such that

ψ (x) =

M+1∑
k=1

g (k)φ (2x+ 1− k) . (18)

The vector g is called a wavelet filter. From (18) we have

suppψ =

[
0,
M +K

2

]
. (19)

In Algorithm 1 we compute a vector psi such that

psi (m) = ψ

(
m− 1

2u

)
, m = 1, . . . , (M +K) 2u−1 + 1, (20)

in the following way. Due to (18) and (20), we have

psi (m) = ψ

(
m− 1

2u

)
=

M+1∑
k=1

g (k)φ
(
(m− 1) 21−u + 1− k

)
=

M+1∑
k=1

g (k) phi (2m− 1 + (1− k) 2u) . (21)
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The sum in the last equation is computed as a cyclic sum. For

m = 1, . . . , (M +K)2u−1 + 1 (22)

we set psi (m) = 0 and for k = 1, . . . ,M + 1 we do

psi (m) = psi (m) + g (k) phi (2m− 1 + (1− k) 2u) , (23)

if 1 ≤ 2m− 1 + (1− k) 2u ≤ K2u + 1. Using the substitution

2m− 1 + (1− k) 2u = 2i− 1, (24)

for i = 1, . . . ,K2u−1 + 1, we obtain

psi
(
i+ (k − 1) 2u−1

)
= psi

(
i+ (k − 1) 2u−1

)
+ g (k) phi (2i− 1) . (25)

Algorithm 1 computes vectors phi and psi for given scaling and wavelet fil-
ters. The filters corresponding to the wavelet families supported by the software
are given in Appendix A (Algorithm 8).

Algorithm 1
Procedure [phi,psi] = WaveletGen(h,g,u)

Input:
h scaling filter
g wavelet filter
u level (integer) that determines points l/2u

Output:
phi vector of scaling function values (c.f. (11))
psi vector of wavelet values (c.f. (20))

K = length(h)− 1 {support length of φ}
h = 2h/sum (h) {normalization of h (c.f. (6))}
{Compute a matrix A using (9)}
A = zeros(K)
for i = 1 : K do
for j = 1 : K do
if 1 ≤ 2i− j ≤ K + 1 then
A (i, j) = h (2i− j)

end if
end for

end for
{Compute eigenvalues and eigenvectors of the matrix A}
[V,D]=eig(A)
{Find an index of a column corresponding to eigenvalue 1}
k = 0 {k is the multiplicity of eigenvalue 1}
for i = 1 : K do
if |(D(i, i)− 1| < 10−7 then
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column=i; k = k + 1
end if

end for
if k 6= 1 then

error(‘Impossible to construct scaling function: eigenvalue 1 must have
multiplicity 1’)

else
phi = zeros(K2u + 1, 1)
{Eigenvector V (:, column) represents values of φ at integer points}
phi(1 : 2u : (K − 1)2u + 1) = V (:, column) {c.f. (12)}
{Compute values of φ at points l/2u}
for i = 1 : u do
for l = 1 : K2i−1 do
x = 2−i + (l − 1) 2−i+1; m = x 2u + 1 {c.f. (14)}
for k = 1 : K + 1 do

if 0 ≤ 2x− k + 1 ≤ K then
phi(m) = phi(m) + h(k)phi((2x− k + 1) 2u + 1) {c.f. (15)}

end if
end for

end for
end for
M = length(g)− 1
{Compute psi containing values of ψ at points l/2u}
psi = zeros((K +M) 2u−1 + 1, 1)
for k = 1 : M + 1 do
i1 = (k − 1) 2u−1 + 1; i2 = (k − 1) 2u−1 + 1 +K 2u−1

psi(i1 : i2) = psi(i1 : i2) + g(k) phi(1 : 2 : K 2u + 1) {c.f. (25)}
end for

end if

2.3. Construction of wavelet bases and dictionaries

Hereafter we drop all normalization factors and normalize all the vectors once
they have been constructed. Note that in (17) we used a translation parameter
k ∈ Z and since B is a Riesz basis the functions from B are linearly independent.
Now, we choose a parameter b such that b = 2−m for some integer m. We define
functions

φj0,k,b (x) = φ
(
2j0x− bk

)
, k ∈ Z, (26)

and
ψj,k,b (x) = ψ

(
2jx− bk

)
, k ∈ Z, j ≥ j0, (27)

which form a redundant dictionary [3, 4, 33]. Obviously, b = 1 corresponds to
a basis.

The left graph of Figure 1 shows two consecutive wavelet functions taken
from a linear spline bases [11]. The right graph of Figure 1 corresponds to
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two consecutive wavelet functions taken from the dictionary spanning the same
space which corresponds to b = 1/4.
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Figure 1: Wavelet functions taken from a basis (left) and a dictionary (right) corresponding
to a linear spline-wavelet prototype from [11].

Algorithm 2 constructs a discrete dictionary, i.e., a matrix DW which con-
tains values of functions from (26) and (27) at Nb equidistant points for some
chosen levels determined by the vector j. Since Algorithm 1 enables us to con-
struct values at points of the form l/2u, we evaluate functions (26) and (27) at
the points

x =
l

2r
, l = 0, . . . , Nb − 1, r =

⌈
log (Nb − 1)

log (2)

⌉
, (28)

where dye denotes the smallest integer number larger than y.
For a chosen vector of levels j, we define a vector of indices ind such that

ind(1) is the number of scaling functions at level j(1), and ind(l) is the number
of wavelets at level j(l− 1) for l = 1, . . . , J , where J is the length of j. We have

suppφj(1),k,b =

[
bk

2j(1)
,
bk +K

2j(1)

]
, suppψj,k,b =

[
bk

2j
,
bk + K+M

2

2j

]
. (29)

Comparing the supports of these functions and the interval

I =

[
0,
Nb − 1

2r

]
(30)

which contains the points from (28), we find that the number of inner scaling
functions, i.e., scaling functions with the whole support in I, is

ni =

⌊
(Nb − 1) 2j(1)−r −K

b

⌋
+ 1, (31)

where the symbol byc denotes the largest integer number smaller than y. The
number of left boundary scaling functions, i.e., functions that have only a part
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of the support in the interior of I and their support contains 0, is

n1 = Ka− 1, a = 1/b, (32)

and similarly the number of right boundary scaling functions is

n2 =

⌈
(Nb − 1) 2j(1)−r

b

⌉
−
⌊

(Nb − 1) 2j(1)−r −K
b

⌋
− 1. (33)

Hence, we have

ind (1) = n1 + ni + n2 = Ka− 1−
⌈

(Nb − 1) 2j(1)−r

b

⌉
. (34)

Similarly, the number of wavelet functions on the level j(l) is

ind (1 + l) = sa− 1 +

⌈
(Nb − 1) 2j(l)−r

b

⌉
. (35)

The first ind(1) columns of DW contain values of scaling functions (26), which
restricted to I are not identically zero, at points given in (28), i.e.,

DW (k, l) = φ

(
2j(1)

k − 1

2r
− b (l −Ka)

)
(36)

for k = 1, . . . , Nb, l = 1, . . . , ind(1). The above equation can be recast:

DW (k, l) = φ

(
(k − 1)− b (l −Ka) 2r−j(1)

2r−j(1)

)
(37)

= phi
(
k − b (l −Ka) 2r−j(1)

)
,

where phi is defined by (11) for the level u = r − j(1). Using the substitution
m = k − b (l −Ka) 2r−j(1), we obtain

DW
(
m+ b (l −Ka) 2r−j(1), l

)
= phi(m), m = 1, . . . ,K2r−j(1) + 1, (38)

under the assumption that 1 ≤ m+ b (l −Ka) 2r−j(1) ≤ Nb.
The other columns of DW contain values of wavelet functions (27) for levels

j = j(1), . . . , j(J) at points (28), i.e.,

DW (k, np + l) = ψ

(
2j
k − 1

2r
− b (l − sa)

)
, s =

M +K

2
, (39)

for k = 1, . . . , Nb, l = 1, . . . , ind(j + 1), and np =
∑j

p=j(1) ind(p + 1 − j(1)).
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Similarly as above we obtain

DW
(
m+ b (l − sa) 2r−j(l), l + np

)
= psi(m), (40)

where 1 ≤ m + b (l − sa) 2r−j(1) ≤ Nb and psi is defined by (20) for the level
u = r − j(1).

The following procedure WaveletDict computes a wavelet dictionary.

Algorithm 2
Procedure [DW , ind, col] = WaveletDict(namef, Nb, j, b)

Input:
namef name of a wavelet family, for available choices see Ap-

pendix A
Nb number of points
j vector of levels
b translation factor b = 2−rb for some integer rb

Output:
DW wavelet dictionary
ind ind(1) is the number of scaling functions at level j(1), and

ind(k) for k > 1 is the number of wavelets at level j(k− 1)
col cell array such that col{n} = {j, k, type, function} if the n-

th column of DW corresponds to values of a scaling function
φ(2jx−bk) or a wavelet ψ(2jx−bk); type=‘inner’ or ‘bound-
ary’ characterizes type of a function; function=‘scaling’ or
‘wavelet’ indicates whether the column corresponds to the
values of a scaling function or a wavelet

{Compute scaling and wavelet filters using Algorithm 8 from Appendix A}
[h,g,correct name] = Filters(namef)
{Test if a wavelet family namef is available}
if correct name= 0 then
DW = [ ]; ind = [ ]; col = [ ]; return

end if
K = length(h)− 1 {support length of φ}
s = (K + length(g)− 1)/2 {support length of ψ}
r = dlog(Nb − 1)/ log(2)e {level characterizing Nb (c.f. (28)}
{Remove levels from j that contain no inner function}
jmin = dlog(s 2r/(Nb − 1))/ log(2))e {coarsest possible level}
j = j(j >= jmin) {removing the levels smaller than jmin}
{Test of parameters}
dj = length(j); rb = dlog(1/b)/ log(2)e {parameter rb from b = 1/2rb}
if dj = 0 then

fprintf(‘no inner functions for these values of levels j, increase j’)
DW = [ ]; ind = [ ]; col = [ ]; return

else if r < max(j) + rb then
fprintf(‘small number of points Nb for these values of j and b’)
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DW = [ ]; ind = [ ]; col = [ ]; return
end if
{Compute scaling and wavelet generators using Algorithm 1}
[phi,psi]=WaveletGen(h,g, r − j(1))
{Compute number of scaling functions at level j(1)}
ind = zeros(dj + 1, 1)
ind(1) = Ka− 1 +

⌈
(Nb − 1) 2j(1)−r/b

⌉
{c.f. (34)}

{Compute number of wavelets for level l}
for l = 1 : dj do

ind (1 + l) = sa− 1 +
⌈
(Nb − 1) 2j(l)−r/b

⌉
{c.f. (35)}

end for
{Compute columns of DW corresponding to scaling functions}
nf = sum(ind); DW = zeros(Nb, nf ); col = cell(nf , 1)
ls = length(phi); n1 = Ka− 1 {c.f. (32)}
n2 =

⌈
(Nb − 1) 2j(1)−r/b

⌉
−
⌊(

(Nb − 1) 2j(1)−r −K
)
/b
⌋
− 1 {c.f. (33)}

{Compute columns corresponding to inner scaling functions (c.f. (38)}
for i = n1 + 1 : ind(1)− n2 do
DW (b(i−Ka)2r−j(1) + 1 : b(i−Ka) 2r−j(1) +K 2r−j(1) + 1, i) = phi
col {i} = {j(1), i−Ka, ‘inner’, ‘scaling’}

end for
{Compute columns corresponding to boundary scaling functions (c.f. (38)}
for i = 1 : n1 do
DW (1 : ls − b (n1 − i+ 1) 2r−j(1), i) = phi((n1 − i+ 1) b2r−j(1) + 1 : ls)
col {i} = {j(1),−n1 + i− 1, ‘boundary’, ‘scaling’}

end for
for i = 1 : n2 do
p = ind(1)− n2 + i {index of column}
DW (b (p−Ka)2r−j(1) + 1 : Nb, p) = phi(1 : Nb − b(p−Ka)2r−j(1))
col {p} = {j(1),−n1 + p− 1, ‘boundary’, ‘scaling’}

end for
{Compute columns of DW corresponding to wavelets (c.f. (40))}
np = ind(1) {number of functions on previous levels}
for l = 1 : dj do
n1 = sa− 1
k1 =

⌊
((Nb − 1)2j(l)−r − s)/b

⌋
, k2 =

⌈
((Nb − 1)2j(l)−r)/b)− 1

⌉
n2 = k2 − k1; nf = n1 + n2 + k1 + 1; lw = length(psi)
for i = n1 + 1 : nf − n2 do
DW (b(i− sa)2r−j(l) + 1 : b(i− sa)2r−j(l) + s2r−j(l) + 1, i+ np) = psi
col {i+ np} = {j(l), i− sa, ‘inner’, ‘wavelet’}

end for
for i = 1 : n1 do
DW (1 : lw− b(n1− i+1)2r−j(l), i+np) = psi((n1− i+1)b2r−j(l) +1 : lw)
col {i+ np} = {j(l),−n1 + i− 1, ‘boundary’, ‘wavelet’}

end for
for i = 1 : n2 do
p = nf − n2 + i
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DW (b(p− sa)2r−j(l) + 1 : Nb, p+ np) = psi(1 : Nb − b(p− sa)2r−j(l))
col {np + p} = {j(l),−n1 + p− 1, ‘boundary’, ‘wavelet’}

end for
psi = psi(1 : 2 : length(psi)), np = np + ind(l + 1)

end for

The main procedure GenDict validates input parameters, generates dictio-
naries DW and normalizes their columns.

Algorithm 3
Procedure [DW , ind, col]= GenDict(name,pars)

Input:
name name of a wavelet family, for available choices see Ap-

pendix A
pars parameters in the form pars = {Nb, j, b}

Description of the parameters:
Nb number of points
j vector of levels
b translation factor b = 2−rb for some integer rb

Output:
DW wavelet dictionary
ind ind(1) is the number of scaling functions at level j(1),

and ind(k) for k > 1 is the number of wavelets at
level j(k − 1)

col cell array such that col {n} = {j, k, type, function},
if the n-th column of DW corresponds to values of
scaling function φ(2jx− bk) or wavelet ψ(2jx− bk);
type=‘inner’ or ‘boundary’ characterizes type of a
function; function=‘scaling’ or ‘wavelet’ indicates
whether the column corresponds to the values of a
scaling function or a wavelet

{Define cell array of names of all available families}
families= { ‘CW2’,‘CW3’,‘CW4’,‘CDF97’,‘CDF97d’,‘CDF53’,
‘Short4’,‘Short3’, ‘Short2’, ‘Db3’,‘Db4’,‘Db5’,‘Sym3’,‘Sym4’,
‘Sym5’,‘Coif26’,‘Coif38’}
{Validate input parameters}
if nargin 6= 2 then

error(‘Need 2 input arguments’)
end if
if ∼ ischar(namef) then

error(‘Name must be a string’)
end if
Nb = pars {1} ; j = pars {2} ; b = pars {3} ; j = sort(j)
if b ≤ 0 then
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error(‘I expect b > 0’)
end if
r = log(1/b)/ log(2)
if |r − round(r)| > 10−10 then

fprintf(‘Choose b such that 1/b = 2r for some integer r’)
DW = [ ]; ind = [ ]; col = [ ]; return

else if ismember({namef},families) then
{Generate dictionary using Algorithm 2}
[DW , ind, col] = WaveletDict(namef, Nb, j, b)
{Normalize columns of DW using Algorithm 9 from Appendix A}
DW = NormDict(DW ,1)

else
error(‘Unknown name of a wavelet family’)

end if

Remark 2. It is worth remarking that the range of scales, say j = (j0, . . . , J)
depends on length of the signal partition. For a signal segment of length Nb =
2r + 1 a dictionary contains values of scaling functions and wavelets at points
l/2r for some integer r. For a signal segment of length 2Nb − 1 = 2r+1 + 1 a
dictionary contains values of functions at points l/2r+1. Thus we have

φj,k,b

(
l

2r

)
= φ

(
2j

l

2r
− kb

)
= φ

(
2j+1 l

2r+1
− kb

)
= φj+1,k,b

(
l

2r+1

)
(41)

and

ψj,k,b

(
l

2r

)
=ψ

(
2j

l

2r
− kb

)
=ψ

(
2j+1 l

2r+1
− kb

)
= ψj+1,k,b

(
l

2r+1

)
. (42)

Therefore, nonzero elements of vectors on the level j in a dictionary for RNb

correspond to nonzero elements of vectors on the level j + 1 in a dictionary
for R2Nb−1. This situation is illustrated in Figure 2, where vectors of values
φj,0,b (l/2r) are displayed for j = 2 and r = 4 and for j = 3 and r = 5.
Note that the nonzero elements in these vectors are the same. Therefore, if
for the signal segment of length Nb the vector j = (j0, . . . , J) is used, then we
recommend to use the vector j = (j0, . . . , J + 1) for the signal segment of length
2Nb − 1, and similarly to use levels j = (j0, . . . , J +m) for the signal segment
of length 2mNb − 1.

Example 1. To build dictionaries for the wavelet family ‘Short3’ at levels 2
and 3, for translation parameter b = 1/4, and the number of points Nb = 33,
use the procedure TestDict below.
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Figure 2: Vectors of values φj,0,b (l/2r) for j = 2 and r = 4 (left) and for j = 3 and r = 5
(right).

Procedure TestDict

namef=‘Short3’; Nb = 33; j = 2 : 3; b = 1/4
[DW , ind, col]=GenDict(namef,{Nb, j, b})

The output is the matrix DW of size 33×97 and the vector ind = [27, 27, 43].
This means that there are 27 scaling functions at level 2, 27 wavelets at level
2, and 43 wavelets at level 3. The cell array col characterizes functions corre-
sponding to columns of DW . For example

col {30} = {2,−9, ‘boundary’, ‘wavelet’} (43)

which means that 30th column of the matrix DW contains values of a wavelet
function ψ

(
22x− b (−9)

)
. This wavelet is a boundary wavelet, i.e., only a part

of its support lies in the interval I defined by (30). Some of the vectors from this
dictionary corresponding to values of scaling functions are displayed in Figure 3
and some of the vectors corresponding to values of wavelets are displayed in
Figure 4.

2.4. Construction of dictionaries for ECG modelling

As mentioned in Sec. 1, because ECG signals are usually superimposed to a
baseline or smooth background, the full dictionary D we use for ECG modelling
is built as follows

D = [DC DW ], (44)

where DW is the output of Algorithm 5 and DC is a matrix containing a few
low frequency components from a discrete cosine basis. Before normalization
DC is given as

DC(k, n) = cos(π(2k − 1)(n− 1)/(2Nb)), k = 1, . . . , Nb, n = 1, . . . ,Mc, (45)
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Figure 3: Plots of 12 vectors from the dictionary DW from Example 1 corresponding to scaling
functions on the level 2.
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Figure 4: Plots of 12 vectors from the dictionary DW from Example 1 corresponding to
wavelets on the level 2.

where Mc is a small number in comparison to Nb. For the numerical examples
of the next section we consider Mc = 10. Algorithm 5 computes DC .

Algorithm 5
Procedure DC = DCos(Nb,Mc)

Input:
Nb the size of the Euclidean space the vectors should belong to
Mc number of frequencies to use starting from 0

Output:
DC matrix whos columns are discrete cosine vectors
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n = 1 : Mc; k = 1 : Nb

DC = cos(π(2k − 1)T (n− 1)/(2Nb))
DC = NormDict(DC ,1)

3. Method for construction of the model

In this section we present the procedures for constructing the ECG signal
model (c.f. Algorithm 6) and for calculating the assessment metrics. The quality
of the signal approximation is assessed with respect to the PRD defined as
follows

PRD =
‖f − f r‖
‖f‖

× 100%, (46)

where f is the original signal and f r is the signal reconstructed by concatenation
of the approximated segments fa{q}, q = 1, . . . , Q.

The local PRD with respect to every segment in the signal partition is indi-
cated as prd(q), q = 1, . . . , Q and calculated as

prd(q) =
‖f{q} − fa{q}‖
‖f{q}‖

× 100%, q = 1, . . . , Q. (47)

For the signal approximation the OOMP method is stopped through a fixed
value tol so as to achieve the same value of prd for all the segments in the
records. Assuming that the target prd before quantization is prd0 we set tol =
prd0‖fq‖/100.

The goal of the signal model is to approximate each segment in the signal
partition using as few atoms as possible. Thus, for a fixed value of PRD, the
sparsity of the signal representation is assessed by the sparsity ratio (SR)

SR =
N

K
, (48)

where N is the total length of the signal and K =
∑Q

q=1 k(q), with k(q) the
number of atoms in the atomic decomposition (1) of each segment of length Nb.
The corresponding quantity evaluated for every cell in the partition is the local
sparsity ratio

sr(q) =
Nb

k(q)
, q = 1, . . . , Q. (49)

This local quantity is relevant to the detection of non-stationary noise, signifi-
cant distortion in ECG patterns, or changes of morphology in the heart beats.

Given an ECG signal f the procedure described in Algorithm 6 constructs
the signal approximation, f r, using the dictionaries introduced in the previous
section.
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Algorithm 6
Procedure [f r, `, c,prd, sr,PRD,SR]= SignalModel(f , Nb,prd0,namef,pars,Mc)

Input:
f signal
Nb number of points in each segment of the partition
prd0 parameter to control the approximation error
namef name of a wavelet family
pars parameters as described in Algorithm 3
Mc number Mc of components in the cosine subdictionary

Output:
f r approximated signal
` cell with the indices of the atoms in the atomic decompo-

sition of each element in the partition
c cell with the coefficients in the atomic decomposition of

each element in the partition
prd vector prd ∈ RQ (cf. (47))
sr vector sr ∈ RQ (cf. (49))
PRD global PRD
SR global SR
{Create the signal partition using Algorithm 10}
[f c, Q, f ]=Partition(f , Nb)
{Construct the wavelet dictionary DW using Algorithm 3 given in Ap-
pendix B}
[DW , ind]= GenDict(namef,pars)
{Construct the component DC using Algorithm 5 given in Appendix B}
[DC ]=DCos(Nb,Mc)
{Merge DC and DW to create dictionary D}
D = [DC DW ]
Set f r = [ ], K = 0 and N =length(f).
for q=1:Q do

tol = prd0‖f c{q}‖/100
{Call the OOMP function to construct the model (c.f. (1))}
[fa{q}, `{q}, c{q}]=OOMP(f c{q},D, tol, 1)
{Calculate local sr and prd (c.f. (49) and (47)}
prd(q) = ‖fc{q}−fa{q}‖

‖fc{q}‖ × 100

k(q) = length(c{q}))
sr(q) = Nb/k(q)
K = K + k(q)
f r = [f r fa{q}]

end for
{Calculate global SR and PRD (c.f. (48) and (46))}
SR = N/K; PRD = ‖f−f r‖

‖f‖ × 100
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4. Numerical results and discussion

We illustrate now the use of the software to approximate records 117, 202,
and 231 in the MIT-BIH Arrhythmia database. Each record consists of 650000
samples and is partitioned for the approximation in segments of Nb = 500 points
each. Table 1 gives the values of the SR (c.f. (48)) achieved using wavelet
bases, denoted as SRB, and wavelet dictionaries denoted as SRD. The wavelet
families are indicated in the first column of Table 1. The wavelet dictionary is
constructed with scales j = (3, . . . , 7) and translation parameter b = 1/4, whilst
the wavelet basis entails to add one more scale and a translation parameter
b = 1. In all the cases the approximation is realized to obtain PRD = 0.51%.

Table 1 is produced by running the script ‘Run ECG Appox’ and changing
the variable ‘namef’ to the corresponding family option.

Procedure Run ECG Approx

{Read the signal f}
file=‘Record 231 11bits.dat’
fid=fopen(file,‘r’)
f=fread(fid,‘ubit11’)
fclose(fid)
{Set the required PRD for the approximation}
prd0 = 0.53
{Set the length for each segment in the signal partition}
Nb = 500
{Set the parameters for the wavelet dictionary}
namef =‘CDF97’; b = 0.25; j = 3 : 7; pars = {Nb, j, b}
{Set the number of cosine components}
Mc = 10
{Construct the signal module}
[f r, `, c,prd, sr,PRD,SR]= SignalModel(f , Nb,prd0,namef,pars,Mc)
{Plote the first 2000 sample points in the signal, the approximation and the
error}

As observed in the Table 1, the gain in dimensionality reduction (larger value
of SR) is significant when consider a wavelet dictionary, instead of a wavelet
basis, as for constructing the component DW of the full dictionary. This results
were demonstrated in [29] on the whole MIT-BIH Arrhythmia database, which
motivated this Communication to provide the details and algorithm for the
actual construction of wavelet dictionaries from different options for the wavelet
prototypes.

In our algorithm, we use the OOMP method for the selection of atoms be-
cause we have found that the OOMP method produces superior results to other
greedy techniques, such as Matching Pursuit [24] and Orthogonal Matching
Pursuit [27], and also superior results to the Basis Pursuits methods based on
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Table 1: SRs achieved using dictionaries with DW component as indicated in the first column
of the table. SRB are values of SR obtained if DW is a basis and SRD if DW is a dictionary.

Rec. 117 202 231

DW SRB SRD SRB SRD SRB SRD

CW2 17.5 26.5 17.3 24.5 15.7 23.0
CW3 17.4 28.1 15.9 24.9 15.6 24.0
CW4 15.7 24.8 14.3 22.5 18.4 21.9
CDF97 21.5 30.3 21.4 28.4 19.5 27.5
CDF97d 17.2 23.5 17.3 22.5 15.8 21.9
CDF53 22.4 29.6 23.6 27.0 20.2 27.0
Db3 18.5 23.7 18.1 22.7 16.6 22.7
Db4 19.0 25.7 19.1 24.7 17.7 24.1
Db5 20.4 26.1 18.7 24.2 17.8 24.1
Sym3 18.4 23.8 18.1 22.7 16.6 22.7
Sym4 19.7 27.5 19.5 25.8 17.7 25.1
Sym5 20.5 28.3 20.6 28.5 18.4 25.4
Short2 8.2 27.9 8.7 26.3 8.1 24.7
Short3 19.6 31.8 18.3 27.6 17.8 27.3
Short4 9.5 29.1 10.1 27.6 9.1 26.6
Coif26 17.7 23.0 17.7 21.8 16.3 24.7
Coif38 19.5 28.5 19.7 26.5 17.8 26.1

1-norm minimization [10], any of these techniques, or others, can be applied
with the identical dictionaries. The aim of this paper was to produce details for
the construction of the wavelet dictionaries given rise to piecewise modeling of
ECG signals using any suitable approach for the selection process.

The top left graph in Figure 5 illustrates the first 2000 points in the record
231 and the approximation for PRD = 0.51%. The top right graph represents
the values of local sparsity 1/sr(q), q = 1, . . . , 1300 for the same record. It
is noticed that these values can be classified into two well defined bands. The
bottom left graph in Figure 5 shows a typical heart beat in a frame corresponding
to a value 1/sr in the upper band, and the bottom right graph to a value in
the lower band. The morphologic difference between the two heart beats is
noticeable at a glance.

5. Conclusions

Details on the construction of wavelets dictionaries for modeling ECG signals
have been provided. The use of the software, which has been made publicly
available on a dedicated website [15], was illustrated to reduce the dimensionality
of three records from the MIT-BIH Arrhythmia database. The conclusions
coincide with those that were drawn in the previous publication [29] using the
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Figure 5: The waveforms in the top left graph are the raw data and the approximations
corresponding to 2000 points in the records 231 (the bottom line in the same graph is the
point-wise error). The top right graph plots the values 1/sr for records 231. The bottom left
graph is a typical heart beat in a segment for which the values of 1/sr(q) belongs to the upper
band. In the bottom right graph the heart beat corresponds to a frame in the lower band.

whole database. However, regardless of the particular application, the purpose
of this paper was to provide a complete description of the construction of the
wavelets dictionaries, which had not been addressed in [29]. We believe the
proposed dictionaries should be of assistance to general applications which relay
on dimensionality reduction at low level distortion as a first step of further ECG
signal processing.

Appendix A

In this appendix, we present auxiliary procedures used in algorithms in Sec-
tion 2. In the algorithms, ‘namef’ denotes a name of a wavelet family, available
choices are:

namef=‘CW2’ Chui-Wang linear spline wavelets [11]
=‘CW3’ Chui-Wang quadratic spline wavelets [11]
=‘CW4’ Chui-Wang cubic spline wavelets [11]
=‘CDF97’ primal CDF97 wavelets [6]
=‘CDF97d’ dual CDF97 wavelets [6]
=‘CDF53’ primal CDF53 wavelets [6]
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=‘Short4’ cubic spline wavelet with short support and 4 van-
ishing moments [9, 18]

=‘Short3’ quadratic spline wavelet with short support and 3
vanishing moments [9, 18]

=‘Short2’ linear spline wavelet with short support and 2 van-
ishing moments [9, 18]

=‘Db3’ Daubechies wavelet with 3 vanishing moments [16]
=‘Db4’ Daubechies wavelet with 4 vanishing moments [16]
=‘Db5’ Daubechies wavelet with 5 vanishing moments [16]
=‘Sym3’ symlet with 3 vanishing moments [17]
=‘Sym4’ symlet with 4 vanishing moments [17]
=‘Sym5’ symlet with 5 vanishing moments [17]
=‘Coif26’ coiflet with 2 vanishing moments and the support

length 6 that is most regular [17]
=‘Coif38’ coiflet with 3 vanishing moments and the support

length 8 that is most symmetrical [17]

A wavelet basis is determined by its scaling and wavelet filters. Algorithm 8
assigns these filters for a chosen wavelet family, the values of filters are computed
by methods from [6, 9, 11, 12, 16, 17, 18].

Algorithm 8
Procedure [h,g,correct name] = Filters(namef)

Input:
namef name of a wavelet family

Output:
h scaling filter for a wavelet family specified by ‘namef’
g wavelet filter for a wavelet family specified by ‘namef’
correct name returns 1 if ‘namef’ is a name of an available wavelet

family, otherwise returns 0

correct name=1
switch (namef)
case ‘CW2’:
h = [1/2, 1, 1/2]; g = [1,−6, 10,−6, 1]/12

case ‘CW3’ :
h = [1/4, 3/4, 3/4, 1/4]; g = [1,−29, 147,−303, 303,−147, 29,−1]/480

case ‘CW4’ :
h = [1/8, 1/2, 3/4, 1/2, 1/8]
g = [1,−124, 1677,−7904, 18482,−24264, 18482,−7904, 1677,−124, 1]/2520

case ‘CDF97’:
h = [−0.045635881557,−0.028771763114, 0.295635881557, 0.557543526229,
0.295635881557,−0.028771763114,−0.045635881557]
g = [0.026748757411, 0.016864118443,−0.078223266529,−0.266864118443
0.602949018236,−0.266864118443,−0.078223266529, 0.016864118443,
0.026748757411]
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case ‘CDF97d’:
h = [0.026748757411,−0.016864118443,−0.078223266529, 0.266864118443,
0.602949018236, 0.266864118443,−0.078223266529,−0.016864118443,
0.026748757411000]
g = [0.045635881557,−0.028771763114,−0.295635881557, 0.557543526229,
−0.295635881557,−0.028771763114, 0.045635881557]

case ‘CDF53’:
h = [1/2, 1, 1/2]; g = [−1/8,−1/4, 3/4,−1/4,−1/8]

case ‘Short4’:
h = [1/8, 1/2, 3/4, 1/2, 1/8]; g = [1/8,−1/2, 3/4,−1/2, 1/8]

case ‘Short3’:
h = [1/4, 3/4, 3/4, 1/4]; g = [−1/4, 3/4,−3/4, 1/4]

case ‘Short2’:
h = [1/2, 1, 1/2]; g = [−1/2, 1,−1/2]

case ‘Db3’ :
h = [0.035226291882101,−0.085441273882241,−0.135011020010391,
0.459877502119331, 0.806891509313339, 0.332670552950957]
g = [−0.332670552950957, 0.806891509313339,−0.459877502119331,
−0.135011020010391, 0.085441273882241, 0.035226291882101]

case ‘Db4’:
h = [0.162901714025620, 0.505472857545650, 0.446100069123190,
−0.019787513117910,−0.132253583684370, 0.021808150237390,
0.023251800535560,−0.007493494665130]
g = −fliplr([0.162901714025620,−0.505472857545650, 0.446100069123190,
0.019787513117910,−0.132253583684370,−0.021808150237390,
0.023251800535560, 0.007493494665130])

case ‘Db5’:
h = [0.003335725285002,−0.012580751999016,−0.006241490213012,
0.077571493840065,−0.032244869585030,−0.242294887066190,
0.138428145901103, 0.724308528438574, 0.603829269797473,
0.160102397974125]
g = [−0.160102397974125, 0.603829269797473,−0.724308528438574,
0.138428145901103, 0.242294887066190,−0.032244869585030,
−0.077571493840065,−0.006241490213012, 0.012580751999016,
0.003335725285002]

case ‘Sym3’:
h = [0.035226291882101,−0.085441273882241,−0.135011020010391,
0.459877502119331, 0.806891509313339, 0.332670552950957]
g = [−0.332670552950957, 0.806891509313339,−0.459877502119331,
−0.135011020010391, 0.085441273882241, 0.035226291882101]

case ‘Sym4’:
h = [0.022785172948000,−0.008912350720850,−0.070158812089500,
0.210617267102000, 0.568329121705000, 0.351869534328000,
−0.020955482562550,−0.053574450709000]
g = fliplr([0.022785172948000, 0.008912350720850,−0.070158812089500,
−0.210617267102000, 0.568329121705000,−0.351869534328000,
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−0.020955482562550, 0.053574450709000])
case ‘Sym5’ :

h = [0.027333068345078, 0.029519490925775,−0.039134249302383,
0.199397533977394, 0.723407690402421, 0.633978963458212,
0.016602105764522,−0.175328089908450,−0.021101834024759,
0.019538882735287]
g = [−0.019538882735287,−0.021101834024759, 0.175328089908450,
0.016602105764522,−0.633978963458212, 0.723407690402421,
−0.199397533977394,−0.039134249302383,−0.029519490925775,
0.027333068345078]

case ‘Coif26’:
h = [9−

√
(15), 13 +

√
(15), 6 + 2

√
(15), 6− 2

√
(15), 1−

√
(15),

−3 +
√

(15)]/32

g = −fliplr([9−
√

(15),−13−
√

(15), 6 + 2
√

(15),−6 + 2
√

(15),

1−
√

(15), 3−
√

(15)]/32)
case ‘Coif38’:

h = [−1/32 −
√

(7)/128,−3/128, 9/32 + 3
√

(7)/128, 73/128, 9/32 −
3
√

(7)/128,−9/128,−1/32 +
√

(7)/128, 3/128]

g = −fliplr([−1/32−
√

(7)/128, 3/128, 9/32 + 3
√

(7)/128,−73/128, 9/32−
3
√

(7)/128, 9/128,−1/32 +
√

(7)/128,−3/128])
otherwise

disp(‘wrong name of a wavelet family’)
correct name = 0

end switch

Now, we introduce a simple procedure NormDict for normalization of dic-
tionaries. More precisely, this procedure normalizes the columns of dictionary
D to have the Euclidean norm equaled to 1/

√
δ.

Algorithm 9
Procedure D = NormDict(D, δ)

Input:
D wavelet dictionary

δ parameter such that prescribed norm size is 1/
√
δ

Output:
D normalized wavelet dictionary such that the Euclidean

norm of each column is 1/
√
δ

tol=10−5

if nargin=1 then
δ = 1

end if
N=size(D,2); i = 0
while i < N do
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i = i+ 1; nor =
√
δ ‖D(:, i)‖

if nor > tol then
D(:, i) = D(:, i)/nor

else
D(:, i) = [ ];N = N − 1

end if
end while

Appendix B

In this appendix, we present auxiliary procedures used in algorithms in Sec-
tion 3. The next procedure Partition creates a partition of the signal f into Q
segments of the prescribed length Nb.

Algorithm 10
Procedure [f c, Q, f ]=Partition(f , Nb)

Input:
f signal
Nb length of each segment in the partition

Output:
f c cells f c{q}, q = 1, . . . , Q with the signal partition
Q number of cells in the partition
f resized signal to be of length QNb

N = length(f);Q = b N
Nb
c; to = 1

f ← f(1 : QNb)
for q = 1 : Q do
t = to : to +Nb − 1; t0 = t0 +Nb

f c{q} = f(t)
end for

The procedure for signal approximation using OOMP method is presented
below.

Algorithm 11
Procedure [fa, `, c]= OOMP(f ,D, tol, `1)

Input:
f signal to be approximated by an atomic decomposition
D wavelet dictionary
tol parameter to control the approximation error
`1 index of the atom for initializing the OOMP algorithm

Output:
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fa approximation of the signal f (c.f. (1))
` vector whose components are the indices of the selected

columns from the input dictionary
c coefficients c ∈ RNb of the atomic decomposition (c.f. (1))
{The method implemented in this function is fully described in the main
paper [29].}
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