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Abstract

A competitive scheme for economic storage of the informational content of an X-Ray
image, as it can be used for further processing, is presented. It is demonstrated that sparse
representation of that type of data can be encapsulated in a small file without affecting
the quality of the recovered image. The proposed representation, which is inscribed within
the context of data reduction, provides a format for saving the image information in a
way that could assist methodologies for analysis and classification. The competitiveness
of the resulting file is compared against the compression standards JPEG and JPEG2000.

1 Introduction

Sparse image representation refers to particular techniques for data reduction. Rather than
representing the image informational content by the intensity of the pixels, the image is trans-
formed with the aim of reducing the number of data points for reproducing the equivalent
information. Lessening the cardinality of medical data is crucial for remote diagnosis and
treatments [1–4]. The interest for this matter in the area of medical technology has recently
been invigorated by the prospect of earlier disease detection, using neural networks and deep
learning methodologies for automatic analysis of X-Ray plates [5–7].

In recent work [8] we have demonstrated that sparse representation, obtained by a large
dictionary and greedy algorithms, renders high quality approximation of X-Ray images. The
framework was proven to produce approximations which are far more sparser than those arising
from traditional transformations such as the Cosine and Wavelet Transforms. Nevertheless,
for the approximation to be useful within the context of automatic health care systems and
remote reporting, it is necessary to ensure that the high levels of the achieved sparsity are not
affected by saving the reduced data in a small file. This paper follows on the study in [8] by
presenting a simple scheme to store the sparse approximation of an X-Ray medical image in
a file of competitive size with respect to the most commonly used formats, namely JPEG and
JPEG2000 (JPEG2).
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Although in general X-Ray images are sparser if the approximation is performed in the
wavelet domain, for analysis purposes the approximation in the pixel intensity domain may
be needed. Hence, we consider here approximations in both domains. It is pertinent to stress
that the aim of this work is not to propose yet one more method for image compression, but
a method for economic storage of the informational content of an X-Ray image as it can be
used for further processing [7, 9–15]. The comparison of the resulting file size, againts those
produced by JPEG and JPEG2, is carried out with the purpose of illustrating the effectiveness
of the proposed scheme.

2 Sparse Image Representation

Throughout the paper R stands for the set of real numbers. Lower boldface letters are used
to represent vectors and upper boldface letters to represent matrices. Standard mathematical
fonts indicate their corresponding components, e.g., d ∈ RN is a vector of components d(i), i =
1, . . . , N and I ∈ RNx×Ny a matrix of elements I(i, j), i = 1, . . . , Nx, j = 1, . . . , Ny.

Suppose that an image, given as a 2D array I ∈ RNx×Ny of intensity values, is to be
approximated by the linear decomposition

Ik =
k∑

n=1

c(n)D`n , (1)

where each c(n) is a scalar and each D`n is an element of RNx×Ny normalized to unity, called an
‘atom’, to be selected from a redundant set, D = {Dn}Mn=1, called a ‘dictionary’. The selection
of the atoms D`n in (1) is carried out according to an optimality criterion.

The goal of a sparse representation is to produce an approximation Ik, of an the image I,
using as few atoms as possible. The mathematical methods for performing the task are either
based on the minimization of the l1-norm [16,17] or are greedy strategies for stepwise selection
of atoms from the dictionary [18, 19]. When using large dictionaries, the latter are especially
suited for practical applications. We focus here on the greedy algorithm known as Orthogonal
Matching Pursuit (OMP), which is very effective at furnishing sparse solutions. In spite of the
fact that the method is computationally intensive, the implementation described in the next
section is very efficient in terms of processing time.

2.1 Orthogonal Matching Pursuit in 2D

The OMP method was introduced in [19] and has been implemented by a number of different
algorithms. We describe a particular implementation for 2D, henceforth referred to as OMP2D.
The dictionary is restricted to be separable, i.e. a 2D dictionary D which corresponds to the
tensor product of two 1D dictionaries D = Dx ⊗Dy. Our implementation of OMP2D is based
on adaptive biorthogonalization and Gram-Schmidt orthogonalization procedures, as proposed
in [20] for the one dimensional case. For the convenience of the interested researcher we include
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the description of its generalization to separable 2D dictionaries, as it is implemented by the
MATLAB and C++ MEX functions we have made available.

Given a gray level intensity image, I ∈ RNx×Ny , and two 1D dictionaries Dx = {dxn ∈
RNx}Mx

n=1 and Dy = {dym ∈ RNy}My

m=1, we approximate the array I ∈ RNx×Ny by the atomic
decomposition of the form:

Ik =
k∑

n=1

cnAn =
k∑

n=1

cnd
x
`xn

(dy
`yn

)T , (2)

where (dy
`yn

)T indicates the transpose of the column vector dy
`yn

. The OMP2D approach deter-

mines the atoms An = dx`xn(dy
`yn

)T in (2) as follows:

On setting k = 0 and R0 = I at iteration k+1 the algorithm selects the elements dx`xk+1
∈ Dx

and dy
`yk+1
∈ Dy corresponding to the indices obtained as

`xk+1, `
y
k+1 = arg max

n=1,...,Mx
m=1,...,My

∣∣(dxn)TRkdym
∣∣ ,

with

Rk = I−
k∑

n=1

c(n)dx`xn(dy
`yn

)T .

(3)

The coefficients {c(n)}kn=1 in (3) are such that ‖Rk‖F is minimum (‖ · ‖F being the Frobenius
norm induced by the Frobenius inner product 〈·, ·〉F). This is guaranteed by calculating the
coefficients as

cn = 〈Bk
n, I〉F, n = 1, . . . , k, (4)

where the matrices {Bk
n}kn=1, are recursively constructed, at each iteration, to account for each

newly selected atom. Starting from B1
1 = W1 = A1 = dx`x1 (dy

`y1
)T the set of matrices is upgraded

and updated through the formula:

Bk+1
n = Bk

n −Bk+1
k+1〈Ak+1,B

k
n〉F, n = 1, . . . , k,

where

Bk+1
k+1 = Wk+1/‖Wk+1‖2

F, with

Wk+1 = Ak+1 −
k∑

n=1

Wn

‖Wn‖2
F

〈Wn,Ak+1〉F.

(5)

For numerical accuracy of the orthogonal set {Wn}k+1
n=1 at least one re-orthogonalization step

is usually needed. It requires the recalculation of the element Wk+1 as

Wk+1 ←Wk+1 −
k∑

n=1

Wn

‖Wn‖2
F

.〈Wn,Wk+1〉F. (6)
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Figure 1: Illustration of an X-Ray image partition in the pixel intensity domain (left graph) and in
the wavelet domain (right graph). The colours are added for visual effect.

The algorithm iterates until for a given parameter ρ the stopping criterion ||I − Ik||2F < ρ is
met.

2.2 Approximation by partitioning

The OMP2D approach described above is to be applied on an image partition. This implies the
division of the image into small disjoint blocks Iq, q = 1, . . . , Q, which without loss of generality
we assume to be square of dimension Nb × Nb. Denoting each element of the image partition
by Iq, these are approximated, independently of each other, to produce the approximations

I
kq
q , q = 1, . . . , Q, of the form (2). The superscript kq indicates the number of atoms intervening

in the decomposition of the block q. As already mentioned, in spite of the fact that the
approximation of most X-Ray images is significantly sparser if performed in the wavelet domain,
results in the pixel intensity domain may be required for particular applications.

The approximation in the wavelet domain involves a transformation, via a Wavelet Trans-
form, which converts the image into the array to be approximated. The inverse transformation
is taken after the approximation is concluded. Fig. 1 provides graphical illustrations of image
partitions in the pixel intensity and the wavelet domain.

Remark 1: The OMP2D algorithm described in Sec. 2.1 is very effective up to some block
size. While the actual size depends on the sparsity of the image, previous studies indicate
that in general for block sizes greater than 24× 24 an alternative implementation is advisable.
The alternative implementation, called Self Projected Matching Pursuit (SPMP2D) [8, 21] is
not only dedicated to tackling large dimensional problems, but also well suited for Graphic
Processing Unit (GPU) programming. However, because for X-Ray medical images a partition
into blocks of size 16 × 16 is a good compromise between sparsity and processing time, we
have focussed on the implementation of OMP2D as given in Sec. 2.1. Other possibilities for
approximating a partition are discussed in [8, 22].
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Figure 2: Prototype atoms, which generate by translation the dictionaries DxLp (left) and DxLw (right).

2.3 Mixed Dictionaries

The available literature in relation to the construction of dictionaries for image representation
is mainly concerned with methodologies for learning atoms from training data [23–28]. Those
methodologies are not designed for learning the types of dictionaries of our interest though. We
restrict the dictionary to be separable, in order to reduce the computational burden and memory
requirements. In previous works [8, 21, 29] we have demonstrated that very large separable
dictionaries, which are easy to construct, render high levels of sparsity. Such dictionaries are
not specific to a particular class of images. A discrimination is only made to take into account
whether the approximation is carried out in the pixel intensity or in the wavelet domain. In
each domain we use mixed dictionaries which are similar in nature, but not equal. They have
the trigonometric dictionaries DxC and DxS, defined below, as common components.

DxC ={wc(n) cos
π(2i− 1)(n− 1)

2M
, i = 1, . . . , N}Mn=1

DxS ={ws(n) sin
π(2i− 1)(n)

2M
, i = 1, . . . , N}Mn=1,

where wc(n) and ws(n), n = 1, . . . ,M are normalization factors, and usually M = 2N .
For approximations in the wavelet domain we add the dictionary DxLw, as proposed in [8],

which is built by translation of the prototype atoms in the right graph of Fig. 2. The mixed
dictionary Dxwd, to be used only in the wavelet domain, is formed as Dxwd = DxC ∪DxS ∪DxLw and
Dywd = Dxwd.

For approximations in the pixel intensity domain we add the dictionary, DxLp, which is
built by translation of the prototype atoms in the left graph of Fig. 2. In this case the mixed
dictionary Dxpd is formed as Dxpd = DxC ∪ DxS ∪ DxLp and Dypd = Dxpd. The corresponding 2D
dictionaries Dwd = Dxwd ⊗ D

y
wd and Dpd = Dxpd ⊗ D

y
pd are very large, but not needed as such.

All calculations are carried out using the 1D dictionaries.
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3 Coding strategy

For the sparse representation of an X-Ray image to be useful within the current trend of medical
technology developments it should be suitable to be encapsulated in a small file. Accordingly,
the coefficients of the atomic decompositions need to be converted into integer numbers. This
operation is known as quantization. We adopt a simple and commonly used uniform quan-
tization technique. For q = 1, . . . , Q the absolute value coefficients |cq(n)|, n = 1, . . . , kq are
converted to integers as follows:

c∆
q (n) =

{
d |cq(n)|−θ

∆
e, if |cq(n)| ≥ θ

0 otherwise,
(7)

where dxe indicates the smallest integer number greater than or equal to x, ∆ is the quantization
parameter, and θ the threshold to disregard coefficients of small magnitude. The signs of the
coefficient are encoded separately, as a vector s, using a binary alphabet.

In order to store the information about the particular atoms present in the approximation
of each block, we proceed as follows: Firstly each pair of indices (`xn, `

y
n)q corresponding to the

atoms in the decompositions of the block Iq is mapped into a single index oq(n). Then the
set oq(1), . . . , oq(kq) is sorted in ascending order oq(n)→ õq(n), n = 1, . . . , kq. This guarantees
that, for each q-value, õq(i) < õq(i + 1), i = 1, . . . , kq − 1. The order of the indices induces
an order in the unsigned coefficients, c∆

q → c̃∆
q and in the corresponding signs sq → s̃q. The

advantage introduced by the ascending order of the indices is that they can be stored as smaller
positive numbers, by taking differences between two consecutive values. Certainly by defining
δq(n) = õq(n)−õq(n−1), n = 2, . . . , kq the string õq(1), δq(2), . . . , δq(kq) stores the indices for the
block q with unique recovery. The number 0 is then used to separate the strings corresponding
to different blocks.

stind =[õ1(1), δ1(2), . . . , δ1(k1), 0, õ2(1), δ2(2), . . . , δ2(k2), 0, · · · , õkQ(1), δkQ(2) . . . , δkQ(kQ)]. (8)

The quantized magnitude of the re-ordered coefficients are concatenated in the strings stcf as
follows:

stcf = [c̃∆
1 (1), . . . , c̃∆

1 (k1), c̃∆
2 (1), . . . , c̃∆

2 (k2), · · · , c̃∆
kQ

(1), . . . , c̃∆
kQ

(kQ)]. (9)

Using 0 if the sign is positive and 1 if it is negative, the signs of the coefficients are placed in
the string, stsg as

stsg = [s̃1(1), . . . , s̃1(k1), s̃2(1), . . . , s̃2(k2), · · · , s̃kQ(1), . . . , s̃kQ(kQ)]. (10)

The next encoding/decoding scheme summarizes the above described procedure.
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Encoding

• Given an image partition Iq ∈ RNb×Nb , q = 1, . . . , Q use OMP2D (or other method) to
approximate each element of the partition by the atomic decomposition:

Ikqq =

kq∑
n=1

cq(n)dx`xn(dy
`yn

)T . (11)

• The approximation is carried out on each block, independently of the others, until the
stopping criterion is reached.

• For each q, quantize as in (7) the magnitude of the coefficients in the decomposition (11)
to obtain c∆

q (n), n = 1, . . . , kq. Store the signs of the non-zero coefficient as components
of a vector sq.

• For each q, map the pair of indices (`xn, `
y
n)q, n = 1, . . . , kq in (11) into a single index

oq(n), n = 1, . . . , kq and sort these numbers in ascending order to have the re-ordered
sets: õq(1) . . . , õq(kq); c̃

∆
q (1), . . . , c̃∆

q (kq) and s̃q(1), . . . , s̃q(kq) to create the strings: stind,
as in (8), and stcf , and stsg as in (9) and (10) respectively.

Let’s recall the content of the file encoded by the above steps:
stind contains the difference of indices corresponding to the atoms in the approximation of each
of the blocks in the image partition.
stcf contains the magnitude of the corresponding coefficients (quantized to integer numbers).
stsg contains the signs of the coefficients in binary format. The quantization parameter ∆ also
needs to be stored in the file. We fix θ = 1.3∆ for all the images.

Decoding

• Recover the indices from their difference. This operation also gives the information about
the number of coefficients in each block.

• Read the quantized unsigned coefficients from the string stcf and transform them into
real numbers as |c̃r

q(n)| = ∆c̃∆
q (n) + (θ − ∆/2). Read the corresponding signs from the

string stsg.

• Recover the approximated partition, for each block, through the liner combination

Ir,kq
q =

kq∑
n=1

s̃q(n)|c̃r
q(n)|d˜̀q

n
.

• Assemble the recovered image as

Ir,K = Ĵ
Q

q=1I
r,kq
q ,

where the Ĵ indicates the operation for joining the blocks to restore the image.
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Note: The MATLAB scripts for implementing the scheme and reproducing the results pre-
sented in the next section have been made available on [30].

4 Results

We illustrate the effectiveness of the proposed encoding scheme by storing the outputs of high
quality sparse approximation of two data sets. Firstly, the Lukas 2D 8 bit medical image
corpus, available on [31]. Secondly, a sample of 25 X-ray chest images taken randomly from
the National Institute of Health (NIH) dataset available on [32].

4.1 Lukas Corpus

The reason for choosing this corpus for illustrating the approach is twofold: (i) it is a standard
data set consisting of 20 images which cover different parts of the human body, as shown in
Fig. 3, and (ii) the images are publicly available in the raster graphics file format portable
network graphics (png), which guarantees there is no loss of quality when saving the file. The
average size of the images in the set is 1943× 1364 pixels.

The quality of the approximation is quantified by the Mean Structural SIMilarity (MSSIM)
index [33,34] and the classical Peak Signal-to-Noise Ratio (PSNR), calculated as

PSNR = 10 log10

(
(28 − 1)

2

MSE

)
, with MSE =

‖I− Ir,K‖2
F

NxNy

. (12)

The required MSSIM is set to be MSSIM ≥ 0.997. This limit guarantees that the approximation
is indistinguishable from the image, in the original size (it should be noticed that the MSSIM
between an image and itself is 1). For the comparison with standard formats all the PSNRs are
fixed as values for which JPEG and JPEG2 produce the required MSSIM. The PSNR is more
sensitive to small variations in the approximation than the MSSIM. By fixing the PSNR, at the
values given in Table 1, the equivalence of quality is ensured with respect to both measures. For
producing a requested PSNR with the sparse representation approach we proceed as follows:
the approximation routine is set to yield a slightly larger value of PSNR and the required one
is then obtained by tuning the quantization parameter ∆.

The approximations are performed in both the pixel intensity and the wavelet domain.
The size of the blocks in the image partition is fixed taking into account previously reported
results [8,21], which indicate that 16×16 is a good trade-off between the resulting sparsity and
the processing time. The information about the sizes of the corresponding files is given in bits
per pixel (bpp) in the third and forth columns of Table 1. The results for JPEG and JPEG2
are placed in the fifth and sixth columns, respectively.

As shown in Table 1, the files corresponding to approximations in the wavelet domain (Swd)
are significantly smaller than those corresponding to approximations in the pixel intensity
domain (Spd), and also smaller than the JPEG ones. While in the present form the JPEG2 files
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Figure 3: Lukas Corpus [31] listed in Table 1. First row: Hand1, Foot0, Head0, Knee1, Foot1. Second
row: Sinus0, Hand0, Head1, Knee0, Sinus1. Third row: Breast0, Breast1, Thorax0, Thorax1, Leg0.
Fourth row: Leg1, Pelvis1, Pelvis0, Spine1, Spine0. The average size of these images is 1943 × 1364
pixels.

are the smallest ones, the files with the sparse representation can be further reduced by entropy
coding each of the strings contained in the file. For example, using adaptive arithmetic coding
the sparse representation files are further reduced between 20% and 30%. This reduction comes
at the expense of processing time, which is why we do not include the entropy coding step in
the software implementation. Arithmetic coding could be implemented in a hardware version
of the scheme, also making the files with the approximation in the wavelet domain smaller than
the JPEG2 ones.
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Image dB Spd Swd JPEG JPEG2

1 Hand1 48.1 0.443 0.286 0.436 0.234
2 Foot0 48.6 0.462 0.306 0.449 0.247
3 Head0 47.4 0.441 0.320 0.419 0.244
4 Knee1 48.0 0.488 0.316 0.485 0.286
5 Foot1 48.1 0.624 0.391 0.566 0.335
6 Sinus0 47.1 0.676 0.416 0.575 0.334
7 Hand0 48.8 0.612 0.424 0.586 0.371
8 Head1 46.4 0.599 0.452 0.546 0.346
9 Knee0 49.1 0.612 0.419 0.573 0.364
10 Sinus1 45.8 0.697 0.453 0.594 0.358
11 Breast0 44.3 0.519 0.465 0.605 0.393

12 Breast1 44.3 0.691 0.629 0.832 0.521
13 Thorax0 44.1 0.827 0.686 0.874 0.629
14 Thorax1 43.4 0.816 0.693 0.924 0.619
15 Leg0 48.9 1.000 0.867 1.152 0.759
16 Leg1 49.2 1.384 1.240 1.584 1.056
17 Pelvis1 44.3 1.596 1.418 1.828 1.248
18 Pelvis0 44.4 1.606 1.435 1.827 1.310
19 Spine1 47.0 2.131 1.922 2.463 1.630
20 Spine0 47.4 2.395 2.298 2.764 1.902

Table 1: Comparison of size rate (in bpp) for the Lukas corpus, listed in the first column. The third
column shows the bpp values corresponding to the sparse representation in the pixel domain (Spd).
The forth column shows the corresponding results in the wavelet domain (Swd). The fifth and sixth
columns are the bpp values for the formats JPEG and JPEG2, respectively. All the approaches render
a MSSIM ≥ 0.997 and the values of PSNR listed in the second column.

A very interesting feature of the numerical results is that the quantization process, intrinsic
to the economic store of the coefficients in the image approximation does not reduce the sparsity.
As a measure of sparsity we use the Sparsity Ratio, which is defined as [35]:

SR =
Number of pixels in the image

Number of coefficients in the representation
.

Accordingly, the sparsity of a representation is manifested as a high value of SR.
For the sake of comparison in addition to calculating the SRs obtained with the dictionary

approach in both domains, before and after quantization, we have also calculated the corre-
sponding SRs produced by nonlinear thresholding of the wavelet coefficients. The results are
shown in Fig. 4.

As already discussed, since the quantization of coefficients degrades quality, to achieve the
required PSNR the approximation of the image has to be carry out up to a higher PSNR value.
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Figure 4: Comparison of the SRs, before and after quantization, corresponding to the dictionary
approach in both the pixel intensity and the wavelet domain and to the wavelet approximation by
nonlinear thresholding.

Nevertheless, because the quantization process maps some coefficients to zero, for the corpus
of 20 images in this study, quantization does not affect sparsity. On the contrary, as can be
observed in Fig. 4, for the sparsest images (first 5 images in Table 1) sparsity actually benefits
from quantization. It is also clear that for the images in the upper part of the table the SR in
the wavelet domain is significantly larger than in the pixel intensity domain. However, the level
of sparsity achieved by the dictionary approach is, in both domains, significantly higher than
that achieved by nonlinear thresholding of the wavelet coefficients. If the dictionary approach
operates in the wavelet domain, then after quantization the mean value gain in SR with respect
to thresholding of the wavelet coefficients is 163%, with standard deviation of 17%. In the pixel
intensity domain the corresponding gain is 113%, with standard deviation of 30%.

In addition to the SR, which is a global measure of sparsity, a meaningful description of the
variation of the image content throughout the partition is rendered by the local sparsity ratio,
which is given as

sr(q) =
N2
b

kq
, q = 1, . . . , Q,

where kq is the number of coefficients in the decomposition of the q-block and N2
b is the number

of pixels in the block. For illustration purposes each of the graphs of Fig. 5 depicts the inverse
of the local sparsity ratio in the pixel domain for nine of the images in the Lukas corpus. Each
of the points in a graph represents the number of coefficients in the atomic decomposition of
each block in the image partition. Hence, the number of points in each of the graphs of Fig. 5
is equal to the number of blocks in the corresponding image partition. Note that showing
the inverse of the local sparsity ratio implies that the brightest pixels correspond to the least
sparse blocks. By comparing the graphs in Fig. 5 with the images in Fig. 3 it is clear that each
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Figure 5: The points in each graph are the inverse of the local sparsity ratio for nine of the images

in Fig. 3. The sizes of the graphs are (from top left to bottom right) 124 × 78, 140 × 86, 97 × 104,

99× 88, 132× 38, 107× 128, 1138× 105, 100× 118 and 131× 53 pixels.

of the graphs in Fig. 5 corresponds to one of the image in the Lukas corpus: Hand0, Foot1,
Head1, Sinus1, Leg0, Thorax0, Breast0, Pelvis1 and Spine1. This suggests that the points of
inverse local sparsity, which yield a reduction of 256 times the size of the original image but still
convey the essence of its content, should be of assistance to classification and feature extraction
techniques. For recent publications in that area of application see [36–42].

4.2 Chest Images

We consider now a sample 25 chest X-Ray images taken randomly from the NIH dataset avail-
able in png format on [32]. Information related to this collection of images is given in [43]. The
25 images used here have been placed on [30]. The sample consists of common views of the
chest in radiology. The posteroanterior, anteroposterior, and lateral views, which are obtained
by changing the relative orientation of the body and the direction of the X-Ray beam. The
images in this set are of similar size and smaller than in the Lukas corpus. The average size
is 496 × 512 pixels. The required PSNR is 45dB for all the images. This value guarantees a
MSSIM of at least 0.99 for every image. The resulting size of the files lead to the same remarks
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as the values in the previous example displayed in Table 1. Indeed, as shown in Fig. 6, the size
rate produced by the dictionary approach in the pixel intensity domain (Spd) is competitive
with the JPEG format for the same quality. The files produced in the wavelet domain (Swd)
are smaller than the JPEG files but larger than the JPEG2 ones. However, let’s recall that
the entropy coding step, which is part of the JPEG and JPEG2 compression standards, is
not included in our scheme. This results in a larger files but fast processing. Certainly, using
MATLAB environment and a small laptop i7 single processor, the average time for carrying
out the approximation and creating the files of the 25 images with the dictionary approach is
1.7 s per image (with standard deviation 0.5). This time is the average of five independent runs
in the time domain and another five independent runs in the wavelet domain.
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Figure 6: Comparison of the file size rate, in bpp, againts the JPEG and JPEG2 formats for the

25 chest images. Spd and Swd correspond to the files containing the representation of the dictionary

approach in the pixel and wavelet domains, respectively.

In this case the sparsity of the image representation benefits from quantization even more
than in the previous case: The dictionary approach in the pixel intensity domain yields a mean
value SR (SR) equal to 25.4 before quantization and SR = 36.7 and after quantization. In the
wavelet domain SR = 35.4 before quantization, while SR = 52.0 after quantization.

5 Conclusions

A scheme for encapsulating the sparse representation of an X-Ray image in a small file has
been proposed. The approach operates within the over-complete dictionary framework, which
achieves a notable level of sparsity in the image representation. An interesting feature, emerging
from the numerical results illustrating the approach, is that the process of devising the small file
does not affect the sparsity of the representation. We consider this a very important outcome,
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because the central aim of the approach is to reduce, as much as possible, the cardinality of
the data representing the informational content of the images. Additionally, the competitivity
of the file size was compared against the standard formats JPEG and JPEG2. The MATLAB
routines, for implementing all the steps of the process to reproduce the results in Table 1 and
Fig. 6, have been made available on a dedicated website [30].

As a final remark it should be mentioned that the quality of the image representation in
the present study is very high. A lower value of MSSIM might be acceptable as diagnostically
lossless representation of X-Ray images [34]. Within the proposed scheme the only effects of
setting a lower value of MSSIM are: a) the approximation routine runs faster, since less atoms
are chosen, and b) the storage file is of course smaller. The right value of MSSIM is to be set
according to how the file is to be used whilst taking into account specialized opinions.
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