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Abstract— A method for selecting a suitable subspace
for discriminating signal components through an oblique
projection is proposed. The selection criterion is based on
the consistency principle introduced by M. Unser and A.
Aldroubi and extended by Y. Elder. An effective implemen-
tation of this principle for the purpose of subspace selection
is achieved by updating of the dual vectors yielding the
corresponding oblique projector.

I. I NTRODUCTION

Oblique projectors are of assistance to signal processing
applications [1]–[7], in particular due to their ability to
discriminate signal components lying in different sub-
spaces. Thereby, as discussed in [1], oblique projectors are
suitable for filtering structured noise. Let us suppose for
instance that a given signalf , represented mathematically
as an element of a vector spaceH, is produced by the
superposition of two phenomena, i.e.f = f1 + f2 where
f1 belongs to a subspaceS1 ⊂ H and f2 belongs to
subspaceS2 ⊂ H. Provided thatS1 ∩ S2 = {0} we can
obtain fromf the componentf1 by an oblique projection
ontoS1 alongS2, which mapsf2 to zero without altering
f1. The procedure is straightforward and effective if the
corresponding subspacesS1 andS2, such thatS1 ∩ S2 =
{0}, are known [1]. Nevertheless, this may not be always
the case. In this letter we address the problem of selecting
the appropriate subspaceS1, from the spanning set of a
larger subspace, in order to fulfil the conditionS1 ∩S2 =
{0} assuming thatS2 is known and fixed.

Given a signal, our strategy for the selection of the
representation subspace is in the line of Matching Pur-
suit (MP) methodologies [8]–[12] and is made out of
two ingredients i) the sampling/reconstructionconsistency
requirementintroduced in [2] and extended in [6] ii) a
recursive procedure for adapting the dual vectors giving
rise to the corresponding oblique projector [13]. It will be
shown here that the latter yields an effective implementa-
tion of a selection criterion that we base on the consistency
principle.

The letter is organized as follows: Sec II introduces
the general framework and discusses the ingredients of
the approach. Namely, the consistency principle and the
recursive updating of the measurement vectors for achiev-
ing the required oblique projection. The Oblique Matching
Pursuit strategy is introduced in Sec III. Its implementation
is discussed in Sec IV along with a numerical example.
The conclusions are drawn in Sec V.

II. T HE CONSISTENCY PRINCIPLE AND STEPWISE

UPDATING OF MEASUREMENT VECTORS

We represent a signalf as an element of an inner
product space that is assumed to be finite dimensional.
The square norm is computed as||f ||2 = 〈f, f〉, where
the brackets denote the corresponding inner product and
we define the inner product in such a way that ifc is a
complex number〈cf, g〉 = c∗〈f, g〉, with c∗ the complex
conjugate ofc. Measurements of a signalf (also called
samples) will be represented as linear functionals. Thus a
set of, sayk, sampling vectorswk

i , i = 1, . . . , k provides
us with a set ofk measurements onf given by the inner
products〈wk

i , f〉, i = 1, . . . , k. The superscriptk is used
to indicate that to reconstruct the signal we will need
to modify the measurement vectorswk

i if an additional
measure is considered. From the sampling measurements
we can construct an approximationfk of f using a set of
reconstruction vectorsvi, i = 1, . . . , k. The consistency
principle introduced in [2] states that the reconstruction
fk from 〈wk

i , f〉, i = 1, . . . , k should be self-consistent
in the sense that if the approximation is sampled with
the same vectors the same samples should be obtained.
In other words, a consistent reconstruction must satisfy:
〈wk

i , f
k〉 = 〈wk

i , f〉, i = 1, . . . , k. This requirement
has been considered further in [6] where it is proved
that: if the reconstruction vectorsvi, i = 1, . . . , k span
a subspaceVk and the sampling vectorswk

i , i = 1, . . . , k
span a subspaceWk such that its orthogonal complement
W⊥ satisfiesVk ∩ W⊥ = {0}, then fk is a consistent
reconstruction off if and only if fk is the oblique
projection off ontoVk alongW⊥. We represent the cor-
responding oblique projector aŝEVkW⊥ . Hence, it is en-
dowed with the following properties i)̂E2

VkW⊥ = ÊVkW⊥ ,

ii) ÊVkW⊥v = v, for any v ∈ Vk iii) ÊVkW⊥w =
0, for any w ∈ W⊥. Given the conditions of the above
statement, the unique consistent approximation off is
thereforefk = ÊVkW⊥f . The oblique projector can be
expressed aŝEVkW⊥ =

∑k

i=1
vi〈w

k
i , ·〉 where 〈wk

i , ·〉

indicates thatÊVkW⊥ acts by performing inner products
as in ÊVkW⊥f =

∑k

i=1
vi〈w

k
i , f〉. Explicit equations

for updating an oblique projector when a new pair of
reconstruction/measurement vectors is to be considered are
given in [13]. As will be discussed in the next sections,
for the purpose of this contribution we can restrict the
measurement vectors to be lineally independent. Hence
the vectorswk+1

i yielding oblique projectors alongW⊥

onto nested subspacesVk+1 = Vk + vk+1 = span{vi}
k+1

i=1

can be inductively obtained as follows:
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Construct vectorsui = vi − P̂W⊥vi, with P̂W⊥ the
orthogonal projector ontoW⊥. Fromw1

1 = u1

||u1||2
every

time a new vector is needed compute it, and update the
previous ones, through the equations [13]:

wk+1

i = wk
i − wk+1

k+1
〈uk+1, w

k
i 〉, i = 1, . . . , k (1)

wk+1

k+1
=

qk+1

||qk+1||2
, qk+1 = uk+1 − P̂Wk

uk+1,(2)

where P̂Wk
is the orthogonal projector ontoWk =

span{ui}
k
i=1. It should be noticed thatVk+1 + W⊥ =

Wk+1 ⊕W⊥, with ⊕ indicating the orthogonal sum and
+ the direct sum.

In the next section we introduce a method for stepwise
selection of the measurement vectors aiming at finding a
subspaceVk for reconstruction such thatVk ∩W⊥ = {0}.

III. O BLIQUE MATCHING PURSUIT (OBLMP)

Matching Pursuit strategies for signal representation
evolve by stepwise selection of vectors, called atoms,
which are drawn from a large set called a dictionary.
Unless the dictionary is orthonormal, the seminal approach
[8] does not yield a stepwise reconstruction of the orthog-
onal projection of the signal onto a selected subspace. A
variation of this approach, called Orthogonal Matching
Pursuit (OMP) does yield the orthogonal projection [9].
Such a reconstruction is therefore optimal in the sense of
minimizing the norm of the approximation error. However,
to render a matching pursuit strategy suitable for dis-
criminating signals representing different phenomena, the
approach needs to be generalized. In order to propose the
Oblique Matching Pursuit (OBLMP) method addressing
this problem we make the following assumptions.

• The subspaceW⊥ in which the signal component to
be filtered lies is known.

• The signal we wish to filter admits a unique decom-
position f = f1 + f2, with f1 ∈ Vk and f2 ∈ W⊥.
This is equivalent to assumingf ∈ Vk + W⊥ with
Vk ∩W⊥ = {0}.

• The subspaceVk can be spanned by vectors of the
dictionary in hand.

As discussed in the previous section, the reconstruction
that eliminates the signal component inW⊥ is fk =
ÊVkW⊥f . Our goal is to construct the oblique projector
by using the appropriate dictionary vectors. We know how
to updateÊVkW⊥ to ÊVk+1W⊥ so as to account for the
inclusion of an additional vectorvk+1. The question arises
now as to how to selectvk+1 giving rise to the right
subspace. We answer this question by recourse to the
consistency principle [2], [6]. Considering that at iteration
k the approximationfk of f is ÊVkW⊥f , let us define the
consistency error with regard to a new measurementwk+1

k+1

as ∆ = |〈wk+1

k+1
, f − ÊVkW⊥f〉|. Thus to construct the

approximationfk+1 = ÊVk+1W⊥f we propose to select
the measurement vectorwk+1

k+1
such that

wk+1

k+1
= arg maxℓ∈J |〈wk+1

ℓ , f − ÊVkW⊥f〉|, (3)

whereJ is the set of indices labeling the corresponding
dictionary vectors not selected in the previous steps.

Proposition 1. If vectors wk
i , i = 1 . . . , k have been

selected by criterion(3) and |〈wk+1

k+1
, f − ÊVkW⊥f〉| 6= 0,

the measurement vectorwk+1

k+1
and the previously selected

vectorswk
i , i = 1 . . . , k are linearly independent.

Proof: Assume that, on the contrary,|〈wk+1

k+1
, f −

ÊVkW⊥f〉| 6= 0 and there exists a set of numbers{ai}
k
i=1

such thatwk+1

k+1
=

∑k

i=1
aiw

k
i . Since for the previ-

ously selected vectors the consistency condition holds,
i.e. 〈wk

i , f〉 = 〈wk
i , ÊVkW⊥f〉, i = 1 . . . , k, we have

|〈wk+1

k+1
, f− ÊVkW⊥f〉| = |〈

∑k

i=1
aiw

k
i , f− ÊVkW⊥f〉| =

|
∑k

i=1
a∗i (〈w

k
i , f〉 − 〈wk

i , ÊVkW⊥f〉)| = 0. This con-
tradicts our assumption, which implies thatwk+1

k+1
6=∑k

i=1
aiw

k
i .

Proposition 2. All measurement vectorswk+1

ℓ (c.f. eq.
(3)) are orthogonal to the reconstruction vectors selected
in previous iterations.

Proof: Everywk+1

ℓ is computed as in (2) and fori =

1, . . . , k it is true that〈qℓ, vi〉 = 〈uℓ, vi〉 − 〈P̂Wk
uℓ, vi〉 =

〈uℓ, ui〉 − 〈uℓ, P̂Wk
vi〉 = 〈uℓ, ui〉 − 〈uℓ, ui〉 = 0.

The last proposition allows us to re-state the OBLMP
selection criterion (3) as

wk+1

k+1
= arg maxℓ∈J |〈wk+1

ℓ , f〉|. (4)

Proposition 1 ensures that, for a given toleranceδ > 0,
by stopping the selection process when the condition
arg maxℓ∈J |〈wk+1

ℓ , f〉| < δ is reached, the method only
selects linearly independent measurement vectors. Let
us assume that at iterationk + 1 the selected indices
are ℓ1, . . . , ℓk+1 and denoteuℓi

= vℓi
− P̂W⊥vℓi

, i =
1, . . . , k+1 andwk+1

i , i = 1, . . . , k+1 to the correspond-
ing duals. Sincespan{uelli}

k+1

i=1
= span{wk+1

i }k+1

i=1
the

fact thatwk+1

i , i = 1, . . . , k + 1 are linearly independent
implies thatuℓi

, i = 1, . . . , k + 1 are linearly independent.
Hence, as will be shown by the next proposition, at step
k + 1 the proposed selection criterion yields a subspace
Vk+1 satisfying the requested property thatVk+1∩W⊥ =
{0}.

Proposition 3. If nonzero vectorsuℓi
= vℓi

−P̂W⊥vℓi
, i =

1, . . . , k + 1 are linearly independent the only vector in
Vk+1 = span{vℓi

}k+1

i=1
which is also inW⊥ is the zero

vector.

Proof: Suppose that there existsg ∈ Vk+1 such that
g ∈ W⊥. Hence,P̂W⊥g = g and there exists a set of
numbers{bi}

k+1

i=1
to expressg as a linear combinationg =∑k+1

i=1
bivℓi

. Thus
∑k+1

i=1
biP̂W⊥vℓi

∑k+1

i=1
bivℓi

, which us-
ing the definition ofuℓi

implies that
∑k+1

i=1
biuℓi

= 0.
For nonzero linearly independent vectors this impliesbi =
0, i = 1, . . . , k + 1 and thereforeg = 0.

At iteration k + 1 the selected indicesℓ1, . . . , ℓk+1

are the labels of the atoms{vℓi
}k+1

i=1
yielding the signal
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reconstruction as given by

fk+1 = ÊVk+1W⊥f =
k+1∑

i=1

〈wk+1

i , f〉vℓi
=

k+1∑

i=1

ck+1

i vℓi
.

(5)
The coefficients in the last equation can be updated at each
iteration according to (1) and (2), i.e.,

ck+1

k+1
= 〈wk+1

k+1
, f〉 (6)

c
k+1

i = cki − ck+1

k+1
〈wk

i , uℓk+1
〉, i = 1, . . . , k. (7)

It is appropriate to point out that these equations, as well
as (1) and (2), have the identical form of the equations
to modify the dual vectors and the coefficients in the Op-
timized Orthogonal Matching Pursuit Approach (OOMP)
[10]. However, now the equations involve vectors of differ-
ent nature yielding therefore a different approach. OOMP
updating arises as the particular case, corresponding to
ui ≡ vi, for which ÊVk+1W⊥ ≡ P̂Vk+1

. Nevertheless,
since the criterion for the selection process we have
adopted here does not necessarily minimize the norm of
the residual error, OOMP is not a truly particular case
of the new approach. On the contrary, we are introducing
an alternative selection criterion based on the consistency
principle, which could also be considered for producing
yet one more variation of OMP.

IV. I MPLEMENTATION DETAILS AND NUMERICAL

EXAMPLE

In consistence with the hypothesis itemized in Sec. III
we consider that the subspaceW⊥ is given, i.e.{ηi}

n
i=1

such thatW⊥ = span{ηi}
n
i=1 is known. For constructing

P̂W⊥ there are a number of possibilities. In the example
we present here the set{ηi}

n
i=1 is linearly dependent and

we have used the technique for dictionary redundancy
elimination proposed in [14]. MATLAB code for its im-
plementation is available at [15]. The method produces a
set of orthonormal vectors{ψi}

m
i=1, m ≤ n that we use

to constructP̂W⊥ =
∑m

i=1
ψi〈ψi, ·〉.

Given a dictionary{vℓ}ℓ∈J we proceed to compute
vectors {uℓ}ℓ∈J as uℓ = vℓ −

∑m

n=1
ψn〈ψn, vℓ〉. Ex-

cept for the selection criterion the next steps parallel
those for the implementation of OOMP but considering
the dictionary{uℓ}ℓ∈J . A routine for implementation of
OOMP based on Modified Gram Smidth orthogonalization
with re-orthogonalization is also available at [15]. With
very minor changes that routine can be used for the
implementation of OBLMP. The algorithm is described
below.

Starting by assigningγℓ = uℓ, ℓ ∈ J , at the first step
we select the indexℓ1 corresponding to the index for which
〈γℓ, f〉/||γℓ||

2 is maximal and setq1 = γℓ1/||γℓ1 ||, w
1
1 =

q1/||γℓ1 || andc11 = 〈w1
1 , f〉. The index setJ is changed to

J = J \ ℓ1. At stepk+1 the sequenceγℓ, ℓ ∈ J (at this
stageJ is the subset of indices not selected in the previous
k steps) is orthogonalized with respect toqk as:γℓ = γℓ−
qk〈qk, γℓ〉 and, if necessary, reorthogonalized with respect

to q1, . . . , qk i.e., γℓ = γℓ −
∑k

j=1
qj〈qj , γℓ〉. After se-

lecting the indexℓk+1 as the maximizer of〈γℓ, f〉/||γℓ||
2

we setqk+1 = γℓk+1
/||γℓk+1

||, wk+1

k+1
= qk+1/γℓk+1

and
ck+1

k+1
= 〈wk+1

k+1
, f〉 and compute{wk+1

i }k
i=1 according to

(1) and {ck+1

i }k
i=1 according to (7). For a given toler-

ance parameterδ the algorithm is to be stopped when
〈γℓ, f〉/||γℓ||

2 < δ for all ℓ ∈ J . The reconstructed signal
is then obtained as in (5).

We illustrate now the proposed method and its moti-
vation by the following example: We assume the signal
space to be the cardinal cubic spline space with distance
0.065 between consecutive knots, on the interval[0, 4].
The background we wish to filter belongs to the subspace
spanned by the set of functionsηi(x) = (x+ 1)−0.05i , i =
1, . . . , 50, x ∈ [0, 4]. This set is highly redundant. A
good representation of the span can be achieved by just
five linearly independent functions. Actually, to avoid
possible bad conditioning, we used only three orthonormal
functions for constructingP̂W⊥ and verified a posteri-
ori that this was enough for the backgrounds we were
dealing with. In the first test the dictionary is the B-
spline basis on[0, 4]. We considered 100 signals, each
of which was randomly generated as linear combination
of 20 dictionary functions. One of such signals is plotted
in the top graph of Figure 1 added to the background.
The functions which are obtained by subtracting to each
basis function its orthogonal projection ontoW⊥ are
not exactly linearly dependent. However, the problem of
constructing the duals is badly conditioned. Hence, the
oblique projection onto the whole space does not yield
the desired signal splitting. A failed attempt to separate
the signal components is displayed by the broken line in
the bottom graph of Figure 1. On the contrary, by applying
the OBLMP approach, we could pick from the whole basis
some elements spanning a subspace which includes the
subspace in which the signal lies. Thus, as depicted in
the same figure, the signal discrimination is successful.
Equivalent results were obtained for all the others signals.
In the second test the dictionary spanning the identical
space consists of highly coherent spline atoms of twice as
much support as the corresponding basis functions [16].
In this case out of 100 signals, randomly generated as
linear combination of 20 dictionary functions, the OBLMP
approach successfully split 90 of them. The failures are
due to the fact that, since the selection process is carried
out by choosing a single atom at each step, in some cases
it finds the right subspace by selecting a larger one which
eventually includes the signal subspace. The construction
of the duals in a larger subspace is likely to become faster
badly conditioned when, as in the second test, the selected
elementsuℓ are more coherent. On the other hand, related
theoretical work [11], [17]–[19] supports the assertion that
a step-wise selection approach should be expected to make
incorrect decisions more frequently when the coherence of
the dictionary is larger.
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Fig. 1. The top graph shows the simulated signal superposed on a
background belonging to the subspaceW⊥ = span{(x+1)−0.05i}50

i=1
.

The broken line of the bottom graph depicts the result of applying the
oblique projection onto the subspace spanned by the whole B-spline basis
on [0, 4]. The continuous line in the same graph depicts the output of
the proposed OBLMP. It reproduces the required signal

V. CONCLUSIONS

A method, termed OBLMP, which allows for the se-
lection of a suitable subspace for representing one of the
signal components, and leaving aside other components of
different nature, has been proposed. The approach evolves
by stepwise selection of the subspace. The selection cri-
terion is based on the consistency requirement introduced
in [2] and extended in [6]. An effective implementation
is achieved by stepwise updating of the measurement
vectors yielding the appropriate oblique projector [13].
With regard to implementation and complexity OBLMP
is equivalent to the OOMP approach [10], [12].

Since the subspace selection is performed by picking
a single atom at each step, there is no guarantee that
the required signal splitting will always be achieved. The
success should depend on the nature of the signal com-
ponents and the dictionaries spanning the subspaces for
representing them. The given examples illustrate the fact
that, as expected, the performance of the method depends

on the coherence of the atoms resulting by subtracting
from the dictionary atoms the orthogonal projection onto
the background subspace. We hope that the results pre-
sented in this letter will stimulate further analysis of the
proposed approach.
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