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Abstract

The construction of measurements suitable for discriminating signal components pro-

duced by phenomena of different nature is considered. The required measurements should

be capable of cancelling out those signal components which are to be ignored when fo-

cussing on a phenomenon of interest. Under the hypothesis that the subspaces hosting

the signal components produced by each phenomenon are complementary, their discrimi-

nation is accomplished by measurements giving rise to the appropriate oblique projector

operator. The subspace onto which the operator should project is selected by non-linear

techniques in line with adaptive pursuit strategies.

PACS numbers: 02.30.Mv, 02.60.Gf, 02.30.Sa, 83.85.Ns, 95.75.Tv, 95.75.Pq, 95.75.Fg

1 Introduction

The word signal is frequently used to refer to a physical carrier convening information about
some phenomenon. We adopt such terminology and further refer to the process of transforming
a signal into a number (within the corresponding units) as a measurement. An appropriate
mathematical setting for this description is to consider that a signal is an element of some
vector space and a measurement a functional transforming the vector into a scalar. In this
effort we discuss the design of measurements in relation to the following problem: Assume that
a signal f , represented as an element of an inner product space H, arises by the superposition
of two components, f1 and f2, each of which is produced by a particular phenomenon and such
that f1 ∈ S1 and f2 ∈ S2, where S1 and S2 are disjoint subspaces of H, i.e. S1 ∩S2 = {0}. This
condition implies that the superposition f = f1 + f2 is unique. The matter to be addressed
here concerns the construction of the appropriate measurements allowing us to discriminate
the component, say f1, from the available signal f and the knowledge of S1 and S2. Under
the condition S1 ∩ S2 = {0} the problem has a straightforward ‘theoretical’ solution, since
the component f1 can be extracted from f by an oblique projection onto S1 and along S2

[1, 2]. Unfortunately, even when theoretically the condition S1 ∩ S2 = {0} is satisfied, if
the subspaces S1 and S2 are not well separated, the construction of the corresponding oblique
projector becomes ill posed. Consequently, the signal splitting can not be achieved by numerical
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calculations in finite precision arithmetics. This is the situation we are concerned with. We
assume that the given subspaces S1 and S2 are ‘theoretically’ disjoint, but close enough to yield
an ill posed problem.

Our proposal for the numerical realization of the phenomenon discrimination is focussed on
the search of a subspace of the given S1, where a class of signals is considered to lie. It will
be assumed throughout the paper that the class of signals to be considered is K-sparse in a
spanning set for S1. By this we mean that given a spanning set for S1, the corresponding linear
superposition of a signal has at most K nonzero coefficients. The K-value should be less than
or equal to the dimension of the subspace of S1 such that the construction of measurement
vectors giving rise to an oblique projection onto itself, and along S2, is well conditioned. This
assumption is quite realistic, considering that in practice there is often a lack of complete
knowledge on the actual subspace S1 and to be on the safe side one may overestimate it.
However, the assumption does not make the problem much easier to solve. Indeed, the problem
of subspace selection is in general a combinatorial problem, whereby an exhaustive search of
possibilities is in general intractable. The approach we propose in this Communication evolves
by step wise optimal selection and is in line with the adaptive greedy approximation termed
Matching Pursuit. Such a technique, which appeared first in the statistic literature [3], has
been extended in the area of signal processing to several greedy strategies [4–9] being currently
of assistance to a range of disciplines, including physics [10–12]. In particular, we revise and
extend the Oblique Matching Pursuit (OBMP) approach which has been recently proposed in
relation the above described problem of signal discrimination [13].

The paper is organized as follows: In Section 2 we introduce the mathematical setting for
signal representation to be adopted here and in Section 3 with discuss the construction of
oblique projectors. Section 4 highlights the importance of the search for sparse representations
in the construction of oblique projectors for phenomenon discrimination. The proposed strategy
is discussed in Section 5 and illustrated in Section 6 by two numerical simulations: 1)The
cancellation of impulsive noise from the register of a system of harmonic oscillators and 2) the
separation of a spectrum from blackbody radiation background. The conclusions are presented
in Section 7.

2 Mathematical framework

Regardless of the informational content of a signal, we deal with it mathematically by consider-
ing it as an element of an inner product space H. Thus, adopting Dirac’s notation, we represent
a signal f as a ket |f〉 and the corresponding dual as a bar 〈f |. Accordingly, the square norm
|||f〉||2 is induced by the inner product that we indicate as 〈f |f〉. For our present purpose we
further assume that all the signals of interest belong to some finite dimensional subspace V ∈ H
spanned by a finite set {|vi〉 ∈ H}M

i=1. Consequently, for every signal |fV〉 ∈ V there exists a set
of numbers {ci}M

i=1 which allow us to express the signal as the linear superposition

|fV〉 =

M
∑

i=1

ci|vi〉. (1)

In the jargon of signal processing the above expansion is called atomic decomposition and the
vectors in the decomposition are called ‘atoms’ [14]. In applications where an economical signal
representation is important, the goal is to construct decompositions involving as few terms as
possible. For this end the atoms are selected from a large and, in general redundant, set called a
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dictionary. If the number of M-terms in (1) is satisfactorily small in relation with the particular
application, the decomposition is said to be sparse.

Even when we think of a signal as an abstract object in an inner product space, for process-
ing tasks we need a numerical representation of such an object. The process of transforming
the signal into a number is refereed to as a measurement or sampling. Since we restrict consid-
erations to linear measurements, we represent them by linear functionals. Thus, making use of
Riesz’ theorem [15] we can express a linear measurement as m = 〈w|f〉 for some |w〉 ∈ H. Hence,
considering M measurements mi, i = 1, . . . , M , each of which is obtained by a measurement
vector |wi〉 we have a numerical representation of the ket |f〉 as given by

mi = 〈wi|f〉, i = 1, . . . , M. (2)

The representation of measures as in (2), which have been used in physics for many years,
has started to become popular within other disciplines through the theory of Compressed
Sensing [16–20].

The problem of reconstructing the whole information content of a signal from a numerical
representation has been extensively studied for the last thirty years from a number of different
points of view. The diversity of available approaches is specially helpful when the reconstruction
is to be achieved on the basis of incomplete information. In particular, the above mentioned
theory of Compressed Sensing has produced strong theoretical results with regard to the recov-
ery of a signal, assumed to be sparse in some orthonormal basis, from a number of non adaptive
measurements which can be significantly less than the dimension of the signal subspace [16–20].
Here we focus on the particular problem involving the reconstruction of a signal from a set of
linear measurements as given in (2), with no further numerical calculations other than using
these numbers in the expansion (1). In other words, we wish to use the measurements as coeffi-
cients in the linear combination (1). The question then arises as to which are the conditions to
be requested for the measurement vectors |wi〉 to produce the corresponding numbers allowing
the reconstruction of the signal |f〉 as

|fV〉 =
M

∑

i=1

|vi〉〈wi|f〉. (3)

A major consequence of working under the assumption that the signal of interest, |fV〉, be-
longs to a finite dimensional subspace, V, is the lack of uniqueness of the measurement vectors
{|wi〉}M

i=1, even when the spanning set {|vi〉}M
i=1 is linearly independent. This statement appears

clearly from the following observation.
Let us denote

∑M

i=1 |vi〉〈wi| as an operator, Ê, so as to recast (3) in the fashion

|fV〉 = Ê|f〉. (4)

This equation tells us that the measurement vectors {|wi〉}M
i=1 should be such that operator Ê is

a projector onto V. Indeed, the operator Ê is a projector if and only if it is idempotent [15,21],
i.e., Ê2 = Ê. Consequently, as discussed below, the projection is onto the range of the operator,
R(Ê), and along its null space N (Ê).

Denoting by D the domain of Ê we recall that

R(Ê) = {|f〉, such that |f〉 = Ê|g〉, for some|g〉 ∈ D}.
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Thus, for Ê an idempotent operator and for |f〉 ∈ R(Ê), we have Ê|f〉 = Ê2|g〉 = Ê|g〉 = |f〉.
This implies that Ê behaves like the identity operator for all |f〉 ∈ R(Ê), regardless of N (E),
which is defined as

N (E) = {|g〉, such that Ê|g〉 = 0, |g〉 ∈ D}.

It is now clear that to reconstruct a signal |f〉 ∈ V by means of (3) the measurement vectors
{|wi〉}M

i=1 should give rise to an operator
∑M

i=1 |vi〉〈wi|, which must be a projector onto V. It
is appropriate to point out that the required operator is not unique (even if the spanning set
{|vi〉}M

i=1 is linearly independent) because there exist many projectors onto V having different
N (Ê). Consequently, for reconstructing signals in the range of the projector its null space can
be chosen arbitrarily. Nevertheless, the null space, and therefore the particular measurement
vectors, become crucial when the projector is to be applied on signals outside its range. It
follows then that the measurement vectors {|wi〉}

M
i=1 can be tailored for a particular purpose.

Such a degree of freedom will be indicated hereforth by using two subscripts for representing
a projector. We adopt the notation ÊVW⊥ to indicate a projector onto the subspace V and
along the subspace W⊥. The particular case ÊVV⊥, where V⊥ is orthogonal to V, corresponds
to an orthogonal projector and we use the special notation P̂V to denote such a projector. The
orthogonal projector is popular in approximation techniques because if a signal |f〉 is to be
approximated by a signal |fV〉 ∈ V the choice |fV〉 = P̂V |f〉 is known to yield the unique signal
in V minimizing the distance |||f〉 − |fV〉||. However, as discussed below, if one is interested
in discriminating signal components produced by phenomena of different nature an alternative
selection of the subspace W⊥ is required. When W⊥ is not orthogonal to V the projector ÊVW⊥

is referred to as an oblique projector.
Let as assume for instance that a signal |f〉 is the superposition of two signals, |f〉 = |fV〉+

|fW⊥〉, each component being produced by a different phenomenon we wish to discriminate. Let
us assume further that we can model the subspaces V and W⊥ hosting each signal component
and such subspaces are disjoint, i.e. V ∩W⊥ = {0}. Thus we can obtain |fV〉 from |f〉, by an
oblique projector onto V and along W⊥. The projector will map to zero the component |fW⊥〉
to produce

|fV〉 = ÊVW⊥|f〉.

In the next section we discuss the construction of measurement vectors {|wi〉}M
i=1 giving rise to

the desired projector.

3 Constructing measurement vectors for discrimination

of signal components

Given two disjoint subspaces V and W⊥, in order to provide a prescription for constructing the
projector ÊVW⊥ one can proceed as follows. Firstly we define S as the direct sum of V and
W⊥, which we express as

S = V ⊕W⊥.

Let W = (W⊥)⊥ be the orthogonal complement of W⊥ in S. Thus we have S = V ⊕ W⊥ =
W ⊕⊥ W⊥, where the operation ⊕⊥ indicates the orthogonal sum, which refers to the direct
sum of orthogonal subspaces.

Considering that {|vi〉}
M
i=1 is a spanning set for V, a spanning set for W is obtained as

|ui〉 = |vi〉 − P̂W⊥|vi〉 = P̂W |vi〉, i = 1, . . . , M. (5)
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Denoting as {|i〉}M
i=1 the standard orthonormal basis for C

M , we define the operators V̂ : C
M →

V and Û : CM → W as

V̂ =

M
∑

i=1

|vi〉〈i|, Û =

M
∑

i=1

|ui〉〈i|.

Thus the adjoint operators Û∗ and V̂ ∗ are expressed as

V̂ ∗ =

M
∑

i=1

|i〉〈vi|, Û∗ =

M
∑

i=1

|i〉〈ui|.

Notice that P̂W V̂ = Û and Û∗P̂W = Û∗ hence, Ĝ : CM → CM defined as:

Ĝ = Û∗V̂ = Û∗Û

is a self-adjoint operator. Its matrix representation being given by the elements 〈i|Ĝ|j〉 =
〈ui|vj〉 = 〈ui|uj〉, i, j = 1, . . . , M.

Remark 1. It is appropriate to stress that

• Operators V̂ and Û are given in terms of spanning sets for the spaces V and W, respec-
tively, and any such spanning set can be used.

• The condition V ∩W⊥ = {0} implies that the dimension of V is equal to the dimension
of W. Hence, provided that the spanning set {|vi〉}M

i=1 is linearly independent, operator
Ĝ has an inverse. Nevertheless, the independence of {|vi〉}M

i=1 is not a requirement and
therefore an inverse for Ĝ need not exist. For the sake of generality we shall use Ĝ†,
which indicates a pseudo-inverse of Ĝ.

The oblique projector operator onto V and along W⊥ is given as [22]

ÊVW⊥ = V̂ Ĝ†Û∗, (6)

or, equivalently, as

ÊVW⊥ =

M
∑

i=1

|vi〉〈wi|, (7)

with

|wi〉 = Û Ĝ†|i〉 =
M

∑

j=1

= |uj〉〈j|Ĝ
†|i〉. (8)

It is actually straightforward to verify that ÊVW⊥ given in (7) satisfies the required properties.
Namely, Ê2

VW⊥ = ÊVW⊥, ÊVW⊥|fV〉 = |fV〉 for all |fV〉 ∈ V, and ÊVW⊥|g〉 = 0 or all |g〉 ∈ W⊥.

Remark 2. The construction of an oblique projector is similar to that of an orthogonal one. The
difference being that in general the subspaces span{|vi〉}M

i=1 = V and span{|wi〉}M
i=1 = W are

different. For the special case {|vi〉}M
i=1 = {|ui〉}M

i=1 we have span{|wi〉}M
i=1 = span{|vi〉}M

i=1 = V,
thereby the projector is self adjoint and, consequently, an orthogonal projector onto V along V⊥.
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We are already in a position to extract the component |fV〉 from |f〉 by the simple operation
|fV〉 = V̂ Ĝ†Û∗|f〉. However, the correct discrimination of the signal components is successful
provided that the subspaces V and W⊥ are well separated. Unfortunately, this is not always the
case and the construction of the necessary projector may generate an ill posed problem. In spite
of the fact that ‘theoretically’ V ∩ W⊥ = {0}, numerical errors, due to the existence of small
eigenvalues values of the operator Ĝ, may cause the failure to find the unique signal splitting that
theoretically one should expect. Nevertheless, the correct separation is still possible, provided
that the signal |fV〉 admits a sparse representation in some spanning set for V. In order words,
one could succeed in extracting |fV〉, provided that it is well represented in a subspace VK ⊂ V
inducing a subspace WK ⊂ W (satisfying VK + W⊥ = WK ⊕⊥ W⊥) where the computation of
the measurement vectors is well posed. If this is the case, the problem of designing measurement
vectors for discriminating signal components can be addressed as the problem of finding the
subspace VK where |fV〉 is well represented. Unfortunately the search for the subspace VK is
in general intractable. Indeed, let us assume that {|vi〉}

M
i=1 is an spanning set for V and VK is

spanned by K elements of such a set. Even possessing this knowledge, the problem of finding
the right subspace by exhaustive search would be a combinatorial problem: Out of a set of
cardinality M there exist

(

M

K

)

possible subsets of cardinality K. As already mentioned, we
shall not look for the sparsest representation but make the search of the appropriate subspace
tractable by means of recursive greedy pursuit strategies, which are only step wise optimal.
Before discussing our approach some considerations are in order.

4 Getting ready for the search

In this section we highlight some properties that will be of assistance in the next section, where
we will present our strategy for the search of the sparse representation achieving the desired
signal discrimination. The goal is to avoid the computation of the measurement vectors in the
whole subspace. Instead, we strive to find the subspace VK ⊂ V, where the signal component
one wants to extract from a signal |f〉 is assumed to lie. We work under the hypothesis that
the subspace W⊥ is given and fixed. Furthermore, V ∩ W⊥ = {0}, which implies that there
exists a unique solution for the signal splitting. The problem we need to address arises from the
fact that, if the subspaces V and W⊥ are not well separated, the numerical calculation of the
measurement vectors is not accurate (due to the numerical operations being carried out in finite
precision arithmetic). As a consequence, the representation of the corresponding projector fails
to produce the correct signals separation. This effect is very much magnified if the data are
affected by errors no matter how insignificant those errors are.

Assuming that we are able to accurately compute in finite precision arithmetic r measure-
ment vectors, we could attempt to single out a signal belonging to a subspace spanned by at
most r vectors (i.e. we could attempt to separate from |f〉 a signal expressible as in (3) but at
most with r nonzero coefficients). However, as discussed above, even possessing this knowledge
about the sought signal the problem of finding the right subspace by exhaustive search is not
affordable. Hence, an adaptive greedy strategy for the subspace selection, given a signal, was
advanced in [13]. Before revising and extending that strategy we need to recall two relevant
properties of oblique projectors.

Property 1. The oblique projector ÊVW⊥ satisfies P̂WÊVW⊥ = P̂W .

Proof. It readily follows by applying P̂W on both sides of (6) or (7). Since P̂W |vi〉 = |ui〉 and
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〈ui, vj〉 = 〈ui, uj〉, one has

P̂WÊVW⊥ =

M
∑

i=1

|ui〉〈wi| = Û Ĝ†Û∗ = P̂W . (9)

Property 2. Given a signal |f〉 in V + W⊥ = W ⊕W⊥, the only vector |g〉 ∈ V satisfying

P̂W |f〉 = P̂W |g〉 (10)

is |g〉 = ÊVW⊥|f〉.

Proof. If |g〉 = ÊVW⊥|f〉 (10) trivially follows from Property 1. Let us assume now that there
exists |g〉 ∈ V such that (10) holds. Then P̂W(|f〉 − |g〉) = 0, i.e., (|f〉 − |g〉) ∈ W⊥. Hence
ÊVW⊥(|f〉 − |g〉) = 0 and, since |g〉 ∈ V, this implies that ÊVW⊥|f〉 = |g〉.

Let us suppose that Vk = span{|vi〉}k
i=1 is given and the spanning set is linearly independent.

Assuming that Vk ∩W⊥ = {0} we guarantee that the set of vectors {|ui〉}k
i=1, with |ui〉 given in

(5), is also linearly independent. Consequently the dimension of Vk is equal to the dimension
of Wk = span{|ui〉}k

i=1 = span{|wk
i 〉}

k
i=1. We use now a superscript k to indicate that the

measurement vectors {|wk
i 〉}

k
i=1 span Wk. Hence these vectors give rise to the oblique projection

of a signal |f〉, onto Vk and along W⊥, as given by:

ÊVkW⊥|f〉 =
k

∑

i=1

|vi〉〈w
k
i |f〉 =

k
∑

i=1

ck
i |vi〉. (11)

It is clear from (11) that if the atoms in the atomic decomposition were to be changed (or some
atoms were added to or deleted from the decomposition) the measurement vectors {|wk

i 〉}
k
i=1,

and consequently the coefficients {ck
i }

k
i=1 in (11), would need to be modified. The recursive

equations below provide an effective way of implementing the task.

Forward/backward adapting of measurement vectors

Starting with |w1
1〉 = |u1〉

|||u1〉||2
, and |u1〉 as in (5), the measurement vectors {|wk+1

i 〉}k+1
i=1 can

be recursively constructed from {|wk
i 〉}

k
i=1 as follows [2]:

|wk+1
i 〉 = |wk

i 〉 − |wk+1
k+1〉〈uk+1|w

k
i 〉, i = 1, . . . , k (12)

|wk+1
k+1〉 =

|γk+1〉

|||γk+1〉||2
, |γk+1〉 = |uk+1〉 − P̂Wk

|uk+1〉, (13)

where P̂Wk
is the orthogonal projector onto Wk = span{|ui〉}k

i=1. We note that, since |uk+1〉 =

P̂W |vk+1〉 and P̂W |wk
i 〉 = |wk

i 〉, (12) can also be written as

|wk+1
i 〉 = |wk

i 〉 − |wk+1
k+1〉〈vk+1|w

k
i 〉, i = 1, . . . , k. (14)

It follows from the above equations that when incorporating a linearly independent atom |vk+1〉
in the atomic decomposition (11), the coefficients can be conveniently modified according to
the recursive equations

ck+1
k+1 = 〈wk+1

k+1|f〉, (15)

ck+1
i = 〈wk+1

i |f〉 = ck
i − ck+1

k+1〈w
k
i |vk+1〉, i = 1, . . . , k. (16)
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Conversely, considering that the atom, |vj〉 say, is to be removed from the atomic decomposition
(11), and denoting the corresponding subspaces Vk\j and Wk\j , in order to span Wk\j the

measurement vectors {|wk\j
i 〉}k

i=1,i6=j are modified according to the equation [2]

|wk\j
i 〉 = |wk

i 〉 −
|wk

j 〉〈w
k
j |w

k
i 〉

|||wk
j 〉||

2
, i = 1, . . . , j − 1, j + 1, . . . , k. (17)

Consequently, the coefficients in (11) should be changed to

c
k\j
i = ck

i −
〈wk

i |w
k
j 〉c

k
j

|||wk
j 〉||

2
, i = 1, . . . , j − 1, j + 1, . . . , k. (18)

5 Adaptive pursuit strategy for subspace selection

Given a signal |f〉, we aim at finding the subspace VK ⊂ V where one of the signal compo-
nents lies. Let us stress once again that the problem arises from the impossibility of correctly
computing the measurement vectors spanning the whole subspace W. Moreover, we have to
face the fact that the corresponding signal component we want to represent is not available.
What we know is that the available signal, |f〉, is expressible as the sum of two components
|f〉 = |fV〉+ |fW⊥〉 and that there exists an unknown subspace VK = span{|vℓi

〉}K
i=1 ⊂ V where

{ℓi}K
i=1 is a set of K unknown indexes such that |f〉 = |fV〉 + |fW⊥〉 = |fVK

〉 + |fW⊥〉, with

|fV〉 = |fVK
〉 =

K
∑

i=1

|vℓi
〉〈wK

i |f〉. (19)

Hence, if the set of indexes {ℓi}K
i=1 were given, one could construct the measurement vectors

|wK
i 〉 in WK = span{P̂W |vℓi

}K
i=1 and obtain the component |fV〉 = |fVK

〉 from (19). Unfortu-
nately, in the problem we are addressing neither the set of indexes {ℓi}K

i=1 nor the component
|fV〉 are given. Nevertheless, by applying P̂W to both sides of (19) we obtain

|fW〉 = |fWK
〉 =

K
∑

i=1

|uℓi
〉〈wK

i |f〉. (20)

Denoting ÎS to the identity operator in S we have P̂W = ÎS − P̂W⊥. Thus, since the subspaces
S and W⊥ are known, we do have access to the component |fW〉. We can then look for the set
of indexes {ℓi}K

i=1 to approximate this component as in (20).

Remark 3. Notice that the measures 〈wK
i |f〉 involved in (19) and (20) are the same. Therefore,

by finding the representation of |fWK
〉 we have the information which is needed to obtain |fVK

〉
from (19). Let us stress that the need to deal with |fW〉 also introduces the bad conditioned
nature of the problem we are considering. Certainly, having access to the signal |fV〉 would
imply that, provided that the spanning set {|vi〉}

M
i=1 were well conditioned, one could find the

sparse approximation (19) without difficulty. However, even when the conditioning of this
spanning set is ideal (i.e. {|vi〉}M

i=1 is an orthonormal basis for V) the fact that we need to deal
with the projection |fW〉, which is sparse in the set {|ui〉 = P̂W |vi〉}M

i=1, introduces the difficulty
we have to face. If the set {ui}M

i=1 were well conditioned, the robust signal splitting could be
obtained by a simple projection. The situation we are concerned with comprises the cases in
which the whole set {ui}M

i=1 is very bad conditioned but the projection (19) has a well conditioned
representation in the subset {uℓi

}K
i=1 ⊂ {ui}M

i=1 we aim to find.
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The proposed strategy for selecting the subset of atoms {|uℓi
〉}K

i=1 evolves by stepwise se-
lection and is in line with the strategies in [23–25]. By fixing P̂Wk

, at iteration k + 1 we select

the index ℓk+1 such that ||P̂W|f〉 − P̂Wk+1
|f〉||2 is minimized.

Proposition 1. Let us denote by J the set of indices {ℓ1, . . . , ℓk}. Given Wk = span{|uℓi
〉}k

i=1,
the index ℓk+1 corresponding to the atom |uℓk+1

〉 for which ||P̂W |f〉 − P̂Wk+1
|f〉||2 is minimal is

to be determined as

ℓk+1 = arg max
n∈J\Jk

|〈γn|f〉|

‖|γn〉‖
, ‖|γn〉‖ 6= 0, (21)

with |γn〉 given in (13), and Jk the set of indices that have been previously chosen to determine
Wk.

Proof. It readily follows since P̂Wk+1
|f〉 = P̂Wk

|f〉+ |γn〉〈γn|f〉
‖γn‖2 and hence ||P̂W |f〉− P̂Wk+1

|f〉||2 =

||P̂W |f〉||2 − ||P̂Wk
|f〉||2 − |〈γn|f〉|2

‖γn‖2 . Because P̂W |f〉 and P̂Wk
|f〉 are fixed, ||P̂W |f〉 − P̂Wk+1

|f〉||2

is minimized if |〈γn|f〉|
‖|γn〉‖

, ‖γn‖ 6= 0 is maximal over all n ∈ J \ Jk.

The OBMP selection criterion [13] selects the index ℓk+1 as the maximizer over n ∈ J \ Jk

of
|〈γn|f〉|

‖|γn〉‖2
, ||γn|| 6= 0.

This condition was proposed in [13] based on the consistency principle [22,26]. Such a principle,
introduced in [26] and extended in [22], states that the reconstruction of a signal should be self-
consistent in the sense that, if the approximation is measured with the same vectors, the same
measures should be obtained. Accordingly, the above OBMP criterion was derived in [13]
in order to select the measurement vector |wk+1

k+1〉 producing the maximum consistency error

∆ = |〈wk+1
k+1|f − ÊVkW⊥f〉|, with regard to a new measurement |wk+1

k+1〉. However, since the
measurement vectors are not normalized to unity, it is sensible to consider the consistency error
relative to the corresponding vector norm |||wk+1

k+1〉||, and select the index so as to maximize over
k + 1 ∈ J \ Jk the relative consistency error

∆̃ =
|〈wk+1

k+1|f − ÊVkW⊥f〉|

|||wk+1
k+1〉||

, |||wk+1
k+1〉|| 6= 0. (22)

In order to cancel this error, the new approximation is constructed accounting for the concomi-
tant measurement vector.

Property 3. The index ℓk+1 satisfying (21) maximizes over k + 1 ∈ J \ Jk the relative consis-
tency error (22)

Proof. Since for all vector |wk+1
k+1〉 given in (13) 〈wk+1

k+1|ÊVkW⊥ = 0 and |||wk+1
k+1〉|| = |||γk+1〉||−1

we have

∆̃ =
|〈wk+1

k+1|f〉|

||wk+1
k+1||

=
|〈γk+1|f〉|

||γk+1||
.

Hence, maximization of ∆̃ over k + 1 ∈ J \ Jk is equivalent to (21).

It is clear at this point that the forward selection of indices prescribed by proposition
(21) is equivalent to selecting the indices by applying the subset selection criterion introduced
in [23] (c.f. Theorem 1) on the projected signal P̂W |f〉 using the dictionary {|ui〉}M

i=1. In
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the context of subspace selection for signal representation we have termed such a criterion
Optimized Orthogonal Matching Pursuit (OOMP) [6].

The hypothesis that the computation of more than r measurement vectors becomes an
ill posed problem enforces the OOMP selection of indices to stop if iteration r is reached.
Nevertheless, the fact that the signal is assumed to be K-sparse, with K ≤ r, does not imply
that before (or at) iteration r one will always find the correct subspace. The r-value just
indicates that it is not possible to continue with the forward selection, because the computations
would become inaccurate and unstable. Hence, if the right solution was not yet found, one
needs to implement a strategy accounting for the fact that it is not feasible to compute more
than r measurement vectors. An adequate procedure is achieved by means of the swapping-
based refinement to the OOMP approach introduced in [9]. As discussed below, it consists of
interchanging already selected atoms with nonselected ones.

Consider that at iteration r the correct subspace has not appeared yet and the selected
indices are labeled by the r indices ℓ1, . . . , ℓr. In order to choose the index of the atom that
minimizes the norm of the residual error as passing from approximation P̂Wr

|f〉 to approxima-
tion P̂Wr\j

|f〉 we should fix the index of the atom to be deleted, ℓj say, as the one for which the
quantity

|cr
i |

|||wr
i 〉||

, i = 1, . . . , r. (23)

is minimized [7, 9, 25, 27].
The process of eliminating one atom from the atomic decomposition (11) is called backward

step while the process of adding one atom is called forward step. The forward selection criterion
to choose the atom to replace the one eliminated in the previous step is accomplished by finding
the index ℓi, i = 1, . . . , r for which the functional

en =
|〈νn|f〉|

|||νn〉||
, with |νn〉 = |un〉 − P̂Wr\j

|un〉, |||νn〉|| 6= 0 (24)

is maximized. In our framework, using (17), the projector P̂Wr\j
is computed as

P̂Wr\j
= P̂Wr

−
〈wr

i |w
r
j〉〈w

r
j |

|||wr
j〉||

2
.

Since P̂Wr
and |wr

j〉 are available, the computation of the sequence |νn〉 in (24) is a simple
operation.

The swapping of pairs of atoms is repeated until the swapping operation, if carried out, would
not decrease the approximation error. The implementation details for an effective realization
of this process are given in [9], and MATLAB codes are available at [28]. Since there is no
guarantee that at the end of the swapping of pairs of atoms the correct subspace has been
found, the process can continue by increasing the number of atoms the swapping involves. At
the second stage, in line with [29], we propose the swapping to be realized by the combinations
of two backward steps followed by two forward steps, provided that the interchange of the two
atoms improves the approximation error. If at the end of the second stage the right subspace
has not yet been found, the number of atoms involved in the swapping is increased up to three
and so on. Notice that if the number of atoms to be interchanged reaches the value r the whole
process would repeat identically. This is avoided by initiating the new circle with a different
initial atom. The above specified hypothesis ensures that the algorithm will stop when the

10



correct signal splitting has been found. At such a stage one has P̂W |f〉 = P̂Wr
|f〉 with Wr

spanned by the selected atoms ℓ1, . . . , ℓr. If the order K of sparseness of the signal is less than
r a number of r − K coefficients in the atomic decomposition

|fVr
〉 =

r
∑

i=1

|vℓi
〉〈wr

i |f〉 =
r

∑

i=1

cr
i |vℓi

〉

will have zero value.
In the realistic case where the measurements are affected by errors, the proposed iterative

process is to be stopped when the condition

||P̂W |f〉 − P̂Wr
|f〉|| ≤ δ

is reached (where δ should be determined by taking into account the errors of the data).

6 Numerical simulations

6.1 Impulsive noise filtering

We extend here the example in [2] concerning the elimination of impulsive noise from the
register of the motion of uncoupled damped harmonic oscillators.

The n-th oscillator is characterized by a frequency of n
2

Hertz and its motion, as a function
of time, is given by the equation

〈t|xn〉 = xn(t) = e−t cos(πnt). (25)

In [2] the register of system’s motion was considered to be the signal

〈t|fV100
〉 =

100
∑

n=1

e−t cos(πnt)

(1 + 0.7(n − 75)2)
, t ∈ [0, 1] (26)

and the impulsive noise corrupting this signal was assumed to belongs to the subspace

W⊥ = span{e−100000(t−0.0025j)2 , j = 1, . . . , 400, t ∈ [0, 1]}. (27)

Due to the nature of the distribution of frequencies in (26), the corresponding oblique projector
for filtering the impulsive noise from the register was recursively constructed by incrementing
the frequency n one by one, until the projection of the noisy signal onto the span of the set
{xn(t)}k

n=1 remained unaltered by increasing the number k of elements in the set up to some
value. As remarked in [2], such a procedure is not always feasible. Let us consider for instance
that the 100 oscillators have frequencies which are not restricted to the range [1, 100] but can
be any integer number in the [1, 405] interval. In this case the recursive construction of the
projector by incrementing the frequency one by one is in general not possible, because the
corresponding numerical calculations become ill posed before reaching the frequency n = 405.
However, the oblique projector, along W⊥ given above, onto a subspace spanned by only 100
functions xn(t), t ∈ [0, 1] with n ∈ [1, 405], can be accurately calculated. Thus, by applying the
techniques of the previous sections to find the right frequencies of the system, the cancellation
of the impulsive noise in the register is rendered possible. This is illustrated by the numerical
simulation described below.
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The impulsive noise is simulated by randomly taking 200 pulses in (27). The system’s
motion is simulated as a linear combination of 100 functions (25) the frequencies of which are
taking, randomly, from the set [1, 405]. The data are assumed to be known in single precision.
The simulation was run 50 times and in all the cases the cancellation of the impulsive noise was
successful. The left graph of Fig. 1 plots one of the realizations of the experiment (motion of
the system plus impulsive noise vs time). The graph on the right depicts the result obtained by
applying the proposed technique to the signal on the left (it coincides with the line representing
the true signal). On the contrary, although the spaces (27) and span{xn(t), t ∈ [0, 1]}405

n=1 are
‘theoretically’ complementary, since the construction of the corresponding oblique projector is
very ill posed, the projection fails to correctly separate the signals.
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Figure 1: The left graph depicts the register of the motion of a system consisting of 100 damped
harmonic oscillators, whose frequencies are integer numbers randomly taken from the interval
[1, 405], corrupted by 200 pulses randomly taken from the subspace W⊥ given in (27). The
graph on the right depicts the result of filtering the signal of the previous graph by the strategy
described in Section 5. The result coincides with the true motion of the simulated system.

6.2 Application to the separation of a spectrum from blackbody

radiation background

We consider an hypothetical situation where the background is assumed to be produced by
a linear combination of up to five blackbodies (e.g. stars) at temperatures of T1 = 3000K,
T2 = 3500K , T3 = 4000K, T4 = 4500K , and T5 = 5000K. Hence, in this case the subspace W⊥

is defined as W⊥ = span{yi}5
i=1, where yi are functions of the wavelength λ as given by

yi(λ) =
C1

λ5(e
C2
λTi − 1)

, C1 = 3.7419 × 10−6erg cm2 s−1, C2 = 1.4288cm K.

Any linear combination of these functions is an acceptable background. In our numerical
experiment the background, y(λ), is generated as y(λ) =

∑5
i=1 yi(λ).

We simulate a spectrum, on a region of λ ranging from zero to 3µm, by considering that it
belongs to the cardinal cubic spline space on the interval [0, 3µm] with separation b = 2−4µm
between consecutive knots. Such a space can be spanned by a B-spline basis arising by translat-
ing a prototype B-spline [30,31]. Different spectra are simulated by randomly drawing K = 70
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functions {vℓi
}70

i=1, from the basis consisting of 483 functions, to generate the decomposition
∑70

i=1 civℓi
, with random coefficients ci ∈ [0, 1], i = 1 . . . , 70. A particular realization is de-

picted in the bottom graph of Fig. 2. The simulated available signal is obtained by adding the
background y(λ) given above to the spectrum, and perturbing each data point with a normal
distributed error of variance corresponding to a percentage of each data value. Let us remark
that, although the background is not ‘exactly’ in the cardinal spline space of the spectrum, it
has a very good representation in such a space. Hence, the calculation of an oblique projector
onto the given spline space and along the space of the background is expected to be very badly
conditioned. Indeed, for very small errors (variance of 10−6% of each data value) the separation
of the spectrum from the background is not possible by an oblique projection onto the whole
spline space. However, in a simulation of 100 different spectra, each of which consisting of 70
randomly taken B-spline functions, the separation was successful in all the cases by applying
the proposed approach. Thus, a more realistic situation was simulated by increasing the vari-
ance of the error up to 1% of each data value. Also in this case the spectrum recovery was a
complete success. In order to make evident the errors’ effect, the variance was increased up
to 5% of each data value. One of the simulations is plotted in the top graph of Fig. 3. The
middle graph of the same figure shows both, the theoretical ‘hidden’ spectrum and the one
recovered by the proposed approach. This graph is meant to illustrate a ‘typical result’, as in a
run of the 100 simulations described above the reconstruction of the corresponding spectra was
of similar quality. The visualization of the approximation quality is made clearer in the bottom
graph of Fig. 3, where a portion of the previous graph (corresponding to the interval [0.5, 1]) is
plotted. Here we can see that, as expected, the approximation (broken line) fails to reproduce
the peaks of low intensity (the one at 0.65µm). This is of course understandable by comparing
the intensity of the spectrum with the intensity of the data on the [0.5, 1] interval. In this
region, a variance of 5% of intensity of each data point entails an uncertainty of more than one
unit in the corresponding scale of intensity. Thus, one cannot expect to correctly spot peaks of
intensity of the same order as the errors. On the other hand, some spurious peaks which are
not in the true spectrum may also appear (note the small peak of negative intensity). However,
on the whole we can confidently assert that the recovery of the simulated spectra is satisfactory
even for significant error level. It is pertinent to point out that if one wished to avoid negative
intensities one could penalize the selection of measurements leading to such negative values. In
our framework this is implementable in a straightforward manner. For instance, in the forward
selection procedure, at iteration k + 1 we select the index ℓk+1 satisfying (21) and it follows
from (11) and (15) that the spectral intensity vector at this step is given as

|fVk+1
〉 = |fVk

〉 − ÊVk
|vℓk+1

〉
〈γk+1|f〉

|||γk+1〉||2
+ |vℓk+1

〉
〈γk+1|f〉

|||γk+1〉||2
, (28)

where |fVk
〉 is the spectral intensity obtained in the previous iteration, ÊVk

the oblique projector
onto the previously selected subspace, |f〉 the observed data vector and |γk+1〉 (constructed as in
(13)) is to be determined in the selection process of the index ℓk+1 according to the prescription
of Proposition 1. Thus, restrictions on |fVk+1

〉 can be incorporated by disregarding the selected
indices yielding unacceptable values of |fVk+1

〉. In the example we are discussing here, one can
avoid negative values of intensity by disregarding those indices which satisfying (21) do not
fulfill the condition 〈λ|fVk+1

〉 = fVk+1
(λ) ≥ 0 for the values of λ being considered. With the

incorporation of this constrain the small negative pick in the middle graph of Fig. 3 disappears
and the whole approximation improves. However, in some other realizations of the experiment
when introducing the possibility constrains some small spurious picks of positive intensity
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appear, yielding on the whole an approximation of quality comparable with the unconstrained
one. The spurious small peaks (or the absence or small peaks present in the true spectrum)
are consequence of the considerable uncertainty in the data. The fidelity of the approximation
with the true spectrum (in all the realizations of the experiment) is improved by reducing the
error of the data.

7 Conclusion

The construction of measurement vectors specially designed for separating signal components
produced by phenomena of different nature was discussed. Assuming that the subspaces host-
ing the signal components are given, the required measurement vectors should yield an oblique
projection along one of the subspaces and onto the other. Considerations were restricted to
those cases for which such subspaces are theoretically complementary, yet very close to each
other, so that the construction of the measurement vectors for the whole space renders an ill
posed problem. A recursive strategy for finding the right subspace to achieve the desired signal
separation was then discussed. By recourse to numerical simulations it was illustrated that,
provided that the signal is sparse in a spanning set of the signal subspace, the required signal
splitting may be achieved by means of adaptive greedy techniques capable of searching for the
required subspace while maintaining stability in the calculations. When tested in situations
involving significant level of errors the proposed technique produced satisfactory results. There-
fore, we are led to conclude that the framework for measurement design advanced here should
be of assistance to a variety of applications where the discrimination of phenomena of different
nature is required.
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Figure 2: The top graph depicts theoretical data produced by the superposition of the spectrum
shown in the bottom graph and black body radiation background.
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Figure Caption

Figure 3. The top graph has the same description as the top graph of Fig. 2, but the data
are perturbed with zero mean normal distributed errors of variance corresponding to 5% of
each data value. The continuous line in the middle graph represents the theoretical spectrum
and the dotted line the spectrum obtained by the proposed approach from the data of the top
graph. The bottom graph magnifies the region [0.5 1] in the previous graph.
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