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Abstract

The problem of separating structured information representing phenomena of differing
natures is considered. A structure is assumed to be independent of the others if can be
represented in a complementary subspace. When the concomitant subspaces are well
separated the problem is readily solvable by a linear technique. Otherwise, the linear
approach fails to correctly discriminate the required information. Hence, a non extensive
approach is proposed. The resulting nonlinear technique is shown to be suitable for dealing
with cases that cannot be tackled by the linear one.

1 Introduction

We consider the problem of discriminating information produced by phenomena of differing
natures, via inverse methods. This involves the study of the physical state of a system by
analyzing its response to some external interaction. We refer to the interactive carrier as input

signal and to the system’s reaction as signal response. Unfortunately, a particular response is
not always directly available, as one may receive it ‘disguised’ by the interference with another
independent phenomenon not being the focus of specific interest. In this paper we restrict
our consideration to responses evoked by statistical systems. By this we understand systems
which are fully characterized by of a probability distribution indicating either the population
of subsystems compressing the whole system, or the degree of uncertainty about the system
being in one of its possible states. We regard both situations to be identical in the description
and refer to subsystems as system’s states.

In order to formulate the problem let us use the label ‘i’, ranging from 1 to M , to denote the
i-th state of a system which is characterized by a probability pi. Adopting Dirac’s notation we
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indicate by a ket |fV〉 the system’s response to some input signal and by |vi〉 the corresponding
response of the i-th state. Consequently, the system’s signal response satisfies

|fV〉 ∝
M

∑

i=1

pi|vi〉.

This equation is transformed into an equality by simply relaxing the condition
∑M

i=1 pi = 1, so
that

|fV〉 =

M
∑

i=1

ci|vi〉,

where the coefficients in the superposition are not necessarily normalized to unity. As already
stated, we are interested in the problem of discriminating |fV〉 from a given signal |f〉 of which
|fV〉 is a component. Out of the many situations involving this problem it immediately comes
to our mind the intensity of X-rays produced simultaneously by dispersion and diffraction or
an infrared emission spectrum superimposed to blackbody radiation. In order to model all
relevant cases we assume that, rather than |fV〉, the available signal is |f〉 = |fV〉 + |fW⊥〉,
where |fW⊥〉 is produced by an independent phenomenon. We focus on those cases ensuring
a unique decomposition, i.e., we further assume that the subspaces hosting the components
|fV〉 and |fW⊥〉 are complementary. However, the focus of our interest refers to complementary
subspaces being close enough together to move the problem of separating the components far
away from the trivial one. Certainly, if the subspaces hosting the signal components are well
separated, the problem is readily solvable by means of an oblique projection onto one of the
subspaces and along the other [1, 2]. Contrarily, if the subspaces are not well separated the
construction of the necessary projector becomes ill posed and the problem needs to be tackled
in an alternative way. In this Communication we address the matter by including a hypothesis
upon the system producing the signal response. We assume that the population of states is

K-sparse in the sense that, out of the M possible states of the system, only K < M of them are

characterized by a significant probability. Nevertheless, the hypothesis generates, in general,
an intractable problem, because of course the populated states are unknown and the number
of possibilities of populating K states out of M is a combinatorial number

(

M

K

)

. This makes
the exhaustive search for the unknown states an impossible task for most values of M and
K. In recent publications [3, 4] a greedy strategy for making the search tractable has been
proposed. In the present context, the proposal of that publications implies to assume a priori
that no state is populated and looks for the populated ones in a stepwise manner. Here we
investigate the possibility of addressing the problem from the opposite view point. Assuming
a priori that all the states are equally populated, we will determine the actual population
of each state via the minimization of the q−norm like quantity

∑M

i=1 |ci|
q, 0 < q ≤ 1. The

minimization of this quantity as an appropriate criterion for determining a sparse solution to an
under-determined linear system is discussed in [5,6]. For nonnegative and normalized to unity
coefficients ci, i = 1, . . . ,M , this quantity is closely related to the the non-extensive entropic
measure broadly applied in physics [7–12] since Tsallis introduced it as the essential ingredient
of his thermodynamic analysis framework [7]. In the present context the value of q plays a
particular role. By choosing 0 < q ≤ 1 we introduce an assumption on the sought distribution.
We assume that not all the possible states in a system’s model are significantly populated. This
assumption is meant to compensate for the actual overestimation of possibilities one usually
makes when a system’s signal response is modelled mathematically.
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The paper is organized as follows: Section 2 introduces the mathematical setting of the
problem and discusses the construction of oblique projectors. Section 3 remarks the need for
nonlinear approaches to separate signal components living in subspaces which are ‘theoretically’
complementary, but close enough to prevent the components discrimination being realized by a
linear operation. The proposed strategy, based on the minimization of the q-normq

∑M

i=1 |ci|
q,

subject to recursively selected constraints, is discussed in Section 4 and illustrated in the same
section by a numerical simulation. The numerical experiment is especially designed to highlight
the robustness of the proposed approach against significant error in the data. The conclusions
are presented in Section 5.

2 Mathematical setting of the problem

As already mentioned, adopting Dirac’s notation we represent the response of a statistical
system to some external interaction as |fV〉, which is expressible in the form

|fV〉 =

M
∑

i=1

ci|vi〉. (1)

Since the kets are elements of an inner product space, their square norm is induced by the inner
product, i.e., ‖|fV〉‖

2 = 〈fV |fV〉.
The problem we are concerned with entails to ‘rescue’ a ket response |fV〉 from an available

mixture |f〉 = |fV〉 + |fW⊥〉, where |fW⊥〉 is produced by an independent phenomenon (e.g. a
structured interference that one would call background referring to a persistent effect out of the
focus of the main interest).

Denoting V = span{|vi〉}
M
i=1 and assuming that the subspace W⊥ such that |fW⊥〉 ∈ W⊥

is known, we restrict considerations to the case V ∩W⊥ = {0} so as to ensure the uniqueness
of the decomposition |f〉 = |fV〉 + |fW⊥〉. Such a problem has a straightforward ‘theoretical’
solution. Certainly, from ÊVW⊥, the oblique projector onto V along W⊥, one immediately has

ÊVW⊥|f〉 = ÊVW⊥(|fV〉 + |fW⊥〉) = |fV〉.

However, as will be discussed in the next section, when the subspaces V and W⊥ are not well
separated the numerical construction of ÊVW⊥ becomes ill posed, thus preventing the signal
separation to be correctly realized.

2.1 Construction of Oblique Projections

Let us recall that every idempotent operator is a projector. Hence, an operator Ê is a projector
if Ê2 = Ê. The projection is along its null space and onto its range. When these subspaces are
orthogonal Ê is called an orthogonal projector, and it is the case if and only if Ê is self-adjoint.
Otherwise it is called an oblique projector. For a good and amusing introduction to oblique
projectors in the context of signal processing we refer to [13] and for advanced theoretical study
of oblique projector operators in infinite dimensional spaces to [14, 15]. Here we will restrict
ourselves to issues related to numerical constructions.

Assuming that V ∩ W⊥ = {0} the oblique projector operator onto V along W⊥ will be
represented as above. Then ÊVW⊥ satisfies Ê2

VW⊥ = ÊVW⊥ and, consequently,

ÊVW⊥|g〉 = |g〉, if |g〉 ∈ V

ÊVW⊥|g〉 = 0, if |g〉 ∈ W⊥.

3



In the particular case for which W⊥ = V⊥ the operator ÊVV⊥ is an orthogonal projection
onto V. For indicating an orthogonal projector onto a subspace, X say, we use the particular
notation P̂X .

Given V and W⊥, in oder to construct ÊVW⊥ we define S as the direct sum of V and W⊥,
which we express as

S = V ⊕W⊥.

Let W = (W⊥)⊥ be the orthogonal complement of W⊥ in S. Thus we have S = V ⊕ W⊥ =
W ⊕⊥ W⊥, where the operation ⊕⊥ indicates the orthogonal sum referring to the direct sum
of orthogonal subspaces. Assuming that a set {yj}

J
j=1 spanning W⊥ is known, we can always

construct the orthogonal projector P̂W⊥ to be expressed in the form

P̂W⊥ =

J ′

∑

j=1

|oj〉〈oj|, J
′ ≤ J,

where vectors {|oj〉}
J ′

j=1 span W⊥ and are orthonormal, while the given set {|yi〉}
J
j=1 is not

necessarily orthogonal, nor even linearly independent.
From the set {|vi〉}

M
i=1, spanning V, a spanning set for W is readily obtained as

|ui〉 = |vi〉 − P̂W⊥|vi〉 = P̂W |vi〉, i = 1, . . . ,M. (2)

Denoting by {|i〉}M
i=1 the standard orthonormal basis for CM , operators V̂ : CM → V and

Û : CM → W are defined as

V̂ =
M

∑

i=1

|vi〉〈i|, Û =
M

∑

i=1

|ui〉〈i|.

Consequently, the adjoint operators Û∗ and V̂ ∗ are

V̂ ∗ =

M
∑

i=1

|i〉〈vi|, Û∗ =

M
∑

i=1

|i〉〈ui|.

Since P̂W V̂ = Û and Û∗P̂W = Û∗, the operator Ĝ : CM → CM given below

Ĝ = Û∗V̂ = Û∗Û

is a self-adjoint operator. The elements of its matrix representation are

〈i|Ĝ|j〉 = 〈ui|vj〉 = 〈ui|uj〉, i, j = 1, . . . ,M.

In terms of the above defined operators the oblique projector ÊVW⊥ is expressed as

ÊVW⊥ = V̂ Ĝ†Û∗ (3)

or, equivalently,

ÊVW⊥ =
M

∑

i=1

|vi〉〈wi|, (4)
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where

〈wi| = 〈i|Ĝ†Û∗ =

M
∑

j=1

〈i|Ĝ†|j〉〈uj| =

M
∑

j=1

g†i,j〈uj|. (5)

with g†i,j = 〈i|Ĝ†|j〉 the element (i, j) of a matrix G† indicating the pseudo inverse of Ĝ. It

is actually straightforward to verify that ÊVW⊥ given in (4) satisfies the required properties.
Namely, i)Ê2

VW⊥ = ÊVW⊥, ii) ÊVW⊥|fV〉 = |fV〉, for all |fV〉 ∈ V, and iii)ÊVW⊥|g〉 = 0 or all
|g〉 ∈ W⊥.

Note: The condition V ∩ W⊥ = {0} implies that the dimension of V is equal to the
dimension of W. Accordingly, if the spanning set {|vi〉}

M
i=1 is linearly independent, operator Ĝ

has an inverse. Nevertheless, the independence of {|vi〉}
M
i=1 is not required, so that an inverse

for Ĝ need not exist. For the sake of generality we use Ĝ†, which it is equal to Ĝ−1 when such
an inverse does exist.

Let us stress that, since operators V̂ and Û are given in terms of spanning sets for the spaces
V and W, respectively, any such spanning sets can be used. This possibility yields a number
of different ways of computing ÊVW⊥, all of them, of course, theoretically equivalent but not
necessarily numerically equivalent when the problem is ill posed.

Considering that |ψn〉 ∈ CM , n = 1, . . . ,M , are the eigenvectors of Ĝ and assuming that
there exist N nonzero eigenvalues λn, n = 1, . . . , N , on taking these eigenvalues in descending
order we can express the matrix elements of the Moore-Penrose pseudo inverse of Ĝ as:

Ĝ† =

N
∑

n=1

|ψn〉
1

λn

〈ψn|. (6)

Moreover, the orthonormal vectors

|ξn〉 =
Û |ψn〉

σn

, σn =
√

λn, n = 1, . . . , N (7)

are singular vectors of Û∗, which satisfy Û∗|ξn〉 = σn|ψn〉, as it is immediate to verify. By
defining now the vectors |ηn〉, n = 1, . . . , N as

|ηn〉 =
V̂ |ψn〉

σn

, n = 1, . . . , N, (8)

the projector ÊVW⊥ in (4) is recast as

ÊVW⊥ =
N

∑

n=1

|ηn〉〈ξn|. (9)

Proposition 1. The vectors |ξn〉 ∈ W, n = 1, . . . , N and |ηn〉 ∈ V, n = 1, . . . , N given in (7)
and (8) are biorthogonal to each other and span W and V, respectively.

The proof of the above proposition is given in Appendix A.
It is immediate to verify that the representation (4) of ÊVW⊥ also arises from (9), since

|wi〉 =

N
∑

n=1

|ξn〉
1

σn

〈ψn|i〉, i = 1, . . . ,M. (10)
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Moreover, the representation (4) can be numerically realized in different ways by using different
spanning sets to compute the operator Ĝ. Indeed, by orthogonalizing {|ui〉}

M
i=1 to obtain

the orthogonal set {|qi〉}
M ′

i=1, M
′ ≤ M also spanning W, the matrix elements of operator Ĝq

(replacing Ĝ) are given as 〈qi|vj〉 (or equivalently as 〈qi|uj〉) i, j = 1, . . . ,M . Thus, vectors 〈wi|

in (4) are calculated as 〈wi| =
∑M ′

j=1〈i|Ĝq

†
|j〉〈qj|.

If spaces V and W⊥ are not too close, which is reflected by the fact that the non zero
singular values of Û are not too small, all the constructions of ÊVW⊥ are equivalent. However,
as will be discussed in the next section, the existence of small singular values may render all the
possible numerical constructions of ÊVW⊥ incapable of producing the expected signal splitting
by the operation ÊVW⊥|f〉.

3 The need for non-linear approaches

This section is dedicated to illustrating, by recourse to a numerical example, the crucial role
that nonlinear approaches could play for the success of discriminating signal components when
the concomitant linear problem is ill posed.

Numerical Example Let V be the cardinal cubic spline space with distance 0.01 between
consecutive knots, on the interval [0, 1]. This is a subspace of dimension M = 103, which we
span using a B-spline basis

B = {Bi(x), x ∈ [0, 1]}103
i=1.

The functions Bi(x) in B are obtained by translations of a prototype function and the restriction
to the interval [0, 1] [16, 17]. A few of such functions are plotted in the left hand graph of

Figure 1. Here the inner product is defined as 〈f |h〉 =
∫ 1

0
f(x)∗h(x) dx, and all the integrals

are computed numerically.

0.1 0.15 0.2 0.25 0.3
0

0.05
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0 0.2 0.4 0.6 0.8 1
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0.032

0.033

0.034

0.035
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Figure 1: Left graph: cubic B spline functions, in the rage x ∈ [0.1, 0.3], from the set spanning the
space of the signal response. Right graph: three of the functions spanning the space of the background.

Randomly taking 30 B-splines {Bℓi
}30

i=1 from B we simulate a spectrum by a weighted
superposition of such functions, i.e., the response signal is modelled as

〈x|fV〉 = fV(x) =

30
∑

i=1

cℓi
Bℓi

(x), x ∈ [0, 1], (11)
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with the coefficients cℓi
randomly chosen from [0, 1].

We simulate a background by considering that it belongs to the subspace W⊥ spanned by
the set of functions

Y = {yj(x) = (x+ 0.01j)−0.01j, x ∈ [0, 1]}50
j=1.

A few functions from this set are plotted in the right hand graph of Figure 1 (normalized to
unity on [0, 1]). The background, g(x), is generated by the linear combination

〈x|g〉 = g(x) =
50

∑

j=1

j4e−0.05jyj(x). (12)

To simulate the data we have perturbed the superposition of (11) and (12), by ‘very small’
Gaussian errors (of variance up to 0.00001% the value of each data point) and plotted the
simulated data in the left hand graph of Figure 2.

This example illustrates well how sensitive to errors the oblique projection is. The subspaces
we are dealing with are disjoint: the last five singular values of operator Û∗ (c.f. (7)) are:

0.3277, 0.3276, 1.0488× 10−4, 6.9356 × 10−8, 2.3367× 10−10,

while the first is σ1 = 1.4493. The smallest singular value cannot be considered a numerical
representation of zero when the calculations are being carried out in double precision arithmetic.
Hence, one can assert that the condition V ∩W⊥ = {0} is fulfilled. However, due to the three
small singular values the oblique projector along W⊥ onto the whole subspace V is very unstable,
which fails to correctly separate the signals in V from the background. The result of applying
the oblique projector onto the signal of the left hand graph is represented by the broken line
in the right hand graph. As can be observed, the projection does not yield the required signal,
which is represented by the continuous dark line in the same graph. Now, since the spectrum
of singular values has a clear jump (the last three singular values are far from the previous
ones) it might seem that one could regularize the projection by truncation of singular values.
Nevertheless, such a methodology turns out to be inappropriate for the present problem, as it
does not yield the correct separation.

Proposition 2 below analyzes the effect that regularization by truncation of singular values
has on the resulting projection.

Proposition 2. Truncation of the expansion (9) to consider up to r terms, produces an oblique

projector along W̃r = W⊥ + W̃0 + Ṽ0, with Ṽ0 = span{|ηi〉}
N
i=r+1 and W̃0 = span{|ξi〉}

N
i=r+1,

onto Ṽr = span{|ηi〉}
r
i=1.

The proof of this proposition is to be found in Appendix B.
The above example illustrates very clearly the need for nonlinear approaches. We know that

a unique and stable solution does exist, since the signal which is to be discriminated from the
background actually belongs to a subspace of the given spline space, and the construction of the
oblique projectors onto such a subspace is well posed. However, the lack of knowledge about
the subspace prevents us from separating the signal components by a linear operation. The
greedy approaches that have been proposed for making tractable the search for the unknown
subspace proceed in a stepwise manner [3,4]. Within those approaches, all the effort is focussed
on the search for the right subspace for recursively constructing and adapting the vectors |wi〉
(c.f. (4)). Conceptually, the proposal in [4] implies to assume a priori that none of the system
states is populated and uses the available signal to determine which are the populated ones.
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Figure 2: Left graph: signal plus background. Right graph: the dark continuous line corresponds
to the signal to be discriminated from the one in the left graph. The broken line corresponds to the
approximation resulting from the oblique projection. The three close light lines correspond to the
approximations obtained by truncation of one, two, and three singular values.

Here we wish to investigate the outcomes yielded by the converse prior assumption, i.e., by
considering a priori that all the states are equally populated and use the available signal to
learn which are the non-populated ones.

4 The proposed nonlinear approach

We start by recalling the available strategy for transforming the problem of discriminating
the system’s signal response |fV〉 from a given signal |f〉 = |fV〉 + |fW⊥〉 into the problem
of constructing the sparse representation of |fV〉 in V. Let us stress, once again that i) the
problem we need to face arises from the ill-posed feature of the oblique projectors onto the
whole subspace V and ii) we work under the hypothesis that there exists an unknown subspace
VK = span{|vℓi

〉}K
i=1 ⊂ V, where {ℓi}

K
i=1 is a set of K unknown indexes such that

|fV〉 = |fVK
〉 =

K
∑

i=1

cℓi
|vℓi

〉. (13)

Equivalently, (13) can be expressed in the form

|fV〉 = |fVK
〉 =

M
∑

i=1

ci|vi〉, with ci = 0 if i 6= ℓj , j = 1 . . . , K. (14)

Hence, to find the subspace VK is equivalent to finding the sparse representation of |fV〉 in V,
i.e. a representation given by (14) where only K coefficients are nonzero. However we need to
allow for the fact that we do not have access to the signal |fV〉 but only to the signal |f〉. As
proposed in [4], we can deal somehow with this lack of information by noticing that by applying
the projector P̂W both sides of (14) we have

|fW〉 = |fWK
〉 =

M
∑

i=1

ci|ui〉, (15)
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where |fWK
〉 = P̂W |fVK

〉 and |fW〉 = P̂W |f〉. Denoting by ÎS the identity operator in S the

projector P̂W is obtained as P̂W = ÎS − P̂W⊥. Thus, since the subspaces S and W⊥ are known,
we do have access to the component |fW〉. Because the coefficients in (14) and (15) are identical,
one can find the sparse representation (14) by finding the sparse representation (15) and using
the resulting coefficients in (14).

At this point we begin to differ from the proposal in [4]. While in that publication the
problem is tackled by a greedy stepwise search for the indices ℓi, i = 1, . . . , K in (13), here
we take a different route and strive to find the sparse solution of (15) by minimization of the
q−norm like quantity

‖|c〉‖q
q =

M
∑

i=1

|ci|
q, with 0 < q ≤ 1. (16)

The minimization of the q-normq for determining a sparse solution has been studied in Math-
ematics and Signal Processing and justified by the following consideration. The problem of
finding the sparsest representation of a given model is equivalent to minimization of the zero
norm ‖c〉‖0 (or counting measure) which is defined as:

‖|c〉‖0 =
M

∑

i=1

|ci|
0

and therefore is equal to the number of nonzero entries of |c〉. The minimization of ‖|c〉‖0

subject to linear constraints is a classical problem of combinatorial search, which is in general
NP-hard [18]. Thus, the minimization of

∑M

i=1 |ci|
q, for 0 < q ≤ 1 has been considered [6].

However since the minimization of
∑M

i=1 |ci|
q, 0 < q < 1 does not lead to a convex optimization

problem, the most popular norm to minimize, when a sparse solution is required, is the 1-
norm

∑M

i=1 |ci|. Minimization of the 1-norm is considered the best convex approximant to
the minimizer of ‖|c〉‖0 [19, 20]. Moreover, it can be efficiently solved by linear programming
techniques [19]. Since the problem of signal separation we are considering admits a unique
solution, we are not particularly concerned about convexity. Hence we will set up our numerical
strategy letting the parameter q take any value in (0, 1].

4.1 Managing the constraints

The optimization process we consider is stated as follows: Given the constraints (15) minimize
∑M

i=1 |ci|
q.

Now, in general, in order make use of constraints (15) we need a numerical representation of
|fW〉, which in practice is obtained by experimental measures. Thus, while restricting consid-
erations to linear measurements we represent them as linear functionals, which, as established
by Riesz’ theorem [21], are amenable to representation by inner products with some vectors.
Accordingly, we express measures on |f〉 by the inner products

mj = 〈mj|f〉, j = 1, . . . , N.

The specification of the measurement vectors |mj〉, j = 1, . . . , N should be given in each par-
ticular case. The ones considered here have been chosen in relation to the examples we are
presenting. Firstly, to simulate the observed data we suppose that the measures are performed

9



by varying some parameter (e. g. time, wavelength, temperature) that is denoted as the
variable ‘x’ discretized at the points xj , j = 1, . . . , N to obtain the measures

fW(xj) = 〈xj|fW〉, j = 1, . . . , N

and the corresponding linear functionals

〈xj|ui〉 = 〈xj|P̂W |vi〉, , j = 1, . . . , N

from the state’s signal responses |vi〉, i = 1, . . . ,M . While the functionals 〈xj |ui〉 are modeled
according to physical considerations, the values fW(xj) are experimental data, thereby affected
by errors. We then use the notation f o

W(xj), j = 1, . . . , N to indicate the observations of
fW(xj), j = 1, . . . , N . Consequently, rather than reproducing the data f o

W(xj), j = 1, . . . , N
we request that the model given by the r.h.s. of (15) satisfies the restriction

N
∑

j=1

(f o
W(xj) − fW(xj))

2 ≤ δ, (17)

δ accounting for the data’s error. The stated optimization process subjected to this constraint
is numerically difficult to realize. Nevertheless, we show here that the available information can
be handled so as to successfully achieve the discrimination of signal components, even when
the data errors are significant. For this we make use of an idea we had introduced much earlier,
in [22], and applied in [23]: Replacing fW(xj) by (15), the condition of minimal square distance
∑N

j=1(f
o
W(xj) − fW(xj))

2 leads to the so called normal equations:

〈un|f
o
W 〉 =

M
∑

i=1

ci〈un|ui〉, n = 1 . . . ,M. (18)

Of course, since we are concerned with ill posed problems we cannot use all these equations to
find the coefficients ci, i = 1, . . . ,M . However, as proposed in [22], we could use ‘some’ of these
equations as constraints of our optimization process. The number of such equations being the
necessary to reach the condition (17).

We have then transformed the original problem into the one of minimizing (16) subject to
a number of equations selected from (18), the ℓn-th, n = 1 . . . , r ones say. We leave for the
moment the restrictions ci ≥ 0, i = 1, . . . ,M . We should worry about them only if they were
not satisfied.

In line with [22] we select the subset of equations (18) in an iterative fashion. We start by
the initial estimation ci = C, i = 1, . . . ,M , where the constant C is determined by minimizing
the distant between the model and the data. Thus,

C =

∑M

n=1〈un|f
o
W〉

∑M

i=1

∑M

n=1〈ui|un〉
. (19)

With this initial estimation we ‘predict’ the normal equations (18) and select as our first
constraint the worst predicted by the initial solution, let this equation be the ℓ1-th one. We
then minimize (16) subject to the constraint

〈uℓ1|f
o
W〉 =

M
∑

i=1

ci〈uℓ1|ui〉, (20)

10



and indicate the resulting coefficients as c
(1)
i , i = 1, . . . ,M . With these coefficients we predict

equations (18) and select the worst predicted as a new constraint to obtain c
(2)
i , i = 1, . . . ,M

and so on. The iterative process is stopped when the condition (17) is reached.
The reader may be aware that the proposed strategy involves highly nonlinear equations

and in many situations the number of necessary constraints is large enough to generate a trou-
blesome numerical task. However, we have been able to solve the simulation of the next section
(comprising up to 57 constraints) by recourse to the method for minimization of the (q-norm)q

published in [6]. Such an iterative method, called FOCal Underdetermined System Solver
(FOCUSS) in that publication, is straightforward implementable. It evolves by computation
of pseudoinverse matrices, which under the given hypothesis of our problem, and within our
recursive strategy for feeding the constraints, are guaranteed to be numerically stable (for a
detailed explanation of the method see [6]).

4.2 Numerical Simulation

We test the proposed approach, first on the simulation of Example 1 of Section 3, and then
extend that simulation to consider a more realistic level of uncertainty in the data. Let us
remark that the signal is meant to represent an emission spectrum consisting of the superpo-
sition of spectral lines (modeled by B-spline functions of support 0.04) which are centered at
the positions (n− 1)∆, n = 0, . . . , 102, with ∆ = 0.01. Since the errors in the data in Example
1 are not significant, the procedure outlined in the previous section accurately recovers the
spectrum from the background, with any positive value of the q-parameter less than or equal
to one. The result (coinciding with the theoretical one) is shown in the right hand top graph
of Figure 3.

Now we transform the example into a more realistic situation by adding larger errors to
the data. In this case, the data set is perturbed by Gaussian errors of variance up to 1% of
each data point. Such a piece of data is plotted in the left middle graph of Figure 3 and the
spectrum extracted by the the proposed approach is represented by the broken line in the right
middle graph of Figure 3, which is difficult to differentiate from the theoretical one (continuous
line).

Finally we increase the data’s error up to 3% of each data point (left bottom graph of
Figure 3) and, in spite of the perceived significant distortion of the signal, we could still recover
a spectrum which, as shown by the broken line in the right bottom graph of Figure 3, is a fairly
good approximation of the true one (continuous line). We have repeated the experiment for
different realization of the errors (with the same variance) and the results remained essentially
equivalent. Moreover, we have considered other realizations of the experiment by drawing
different spectra through the process described in Section 3. By observing the outcomes of a
number the different realizations we can assert that the quality of the results shown in Figure 3
is a fair representation of those obtained for different spectra. Variation of the q-value did not
produce significant changes. The results of Figure 3 were obtained for the value q = 0.8. The
number of equations that were necessary to use in order to reach the stopping criterion for the
different level of error were: K = 57 for the data in the top graph, K = 51 for the data in the
middle graph and K = 43 for the bottom graph.

It is appropriate to stress once more that for small level of errors the solution of this example
is unique. The numerical experiment illustrates the fact that, for the degree of sparsity being
considered (out to 103 states only 30 are populated) the solution can be reached by the whole
range of q values in (0, 1]. This is so because for all q in the range (0, 1] the number of constraints

11
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Figure 3: Top left graph: signal plus background generated as described in Example 1 of Section
3. Top right graph: Recovered system’ signal response, which coincides with the true one. Middle
left graph: signal of Example 1 distorted by Gaussian errors of variance up to 1% of each data value.
Middle right graph: the broken line represents the approximation of the system’ signal response
yielded by the proposed approach. The continuous line represents the true signal. Bottom graphs:
Same description as in the previous graphs but the data distorted by Gaussian errors of variance up
to 3% of each data value.

which are needed to obtain the solution is still small enough to yield a well posed problem. Let
us stress further that, we have not made explicit used of the constraints ci ≥ 0, i = 1, . . . ,M
but look for the solution by minimization of the quantity

∑M

i=1 |ci|
q, which is non-extensive for

all q-values.
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5 Conclusions

The problem of discriminating information produced by phenomena of different nature has been
addressed through a non-extensive nonlinear approach. The proposed framework is founded
on the minimization of a q−norm like quantity. It is appropriate to remark that our main
concern was to realize the discrimination of information components in cases admitting a unique

theoretical solution. The problem was transformed into an underdetermined linear one, due
to the numerical instability of the concomitant full rank problem. The resulting approach has
been tested by recourse to a numerical example which cannot be handled by linear techniques
(even for unrealistically high quality data). A detailed analysis of the limitation affecting the
linear technique has been provided. The nonlinear approach presented here was shown to be
capable of overcoming those limitations. It has correctly realized the required task, even for
data distorted by significant random errors. We are aware that further studies may be in order
and we are confident that the results presented here will motivate future works.
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A. Proof of Proposition 1

Proof. Using (7) and (8) we have

〈ξm|ηn〉 =
1

σnσm

〈ψn|Û
∗V̂ |ψm〉 = δn,m

λm

σnσm

= δn,m,

which proves the biorthogonality property.
The proof that span{|ξn〉}

N
n=1 = W stems from the fact that W = span{|ui〉}

M
i=1 = span{|wi〉}

M
i=1,

which allows us to express an arbitrary |g〉 ∈ W as the linear combination |g〉 =
∑M

i=1 ai|wi〉.

Then, using (10), we have |g〉 =
∑N

n=1 ãn|ξn〉 with ãn = 1
σn

∑M

i=1 ai〈i|ψn〉, which proves that

W ⊂ span{|ξi〉}
N
i=1. On the other hand for |g〉 ∈ span{|ξi〉}

N
i=1 we can write |g〉 =

∑N

n=1 dn|ξn〉

and using (7) we have f〉 =
∑M

i=1 d̃i|ui〉, with d̃i = 1
σn

∑N

n=1 dn|ψn(i)〉. This proves that

span{|ξi〉}
N
i=1 ⊂ W and therefore span{|ξn〉}

N
n=1 = W. The proof that span{|ηn〉}

N
n=1 = V

is equivalent to the previous one.

B. Proof of Proposition 2

Proof. The biorthogonality between {|ξ〉}r
i=1 and {|ηi〉}

r
i=1 established in Proposition 1 ensures

that ÊṼrW̃r
=

∑r

i=1 |ηi〉〈ξi| is a projector, since Ê2
ṼrW̃r

= ÊṼrW̃r
.

As established in Proposition 1, V = span{|ηi〉}
N
i=1, and therefore every |f〉 ∈ V can be

decomposed as |f〉 = |fr〉+ |fo〉 with |fr〉 ∈ span{|ηi〉}
r
i=1 and |fo〉 ∈ span{|ηi〉}

N
i=r+1. Moreover,

ÊṼrW̃r
|f〉 = |fr〉, ÊṼrW̃r

|fr〉 = fr〉, and ÊṼrW̃r
|fo〉 = 0, which proves that the projection is

onto Ṽr and Ṽ0 is included in the null space of ÊṼrW̃r
. Equivalently, for every |go〉 ∈ W̃0 =

span{|ξi〉}
N
i=r+1 we have ÊṼrW̃r

|go〉 = 0, because the set {|ξi〉}
N
i=1 is orthonormal. Thus, W̃0 is

included in the null space of ÊṼrW̃r
.
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